Safety in the Sky: Cloud-Powered Smart Security for Vehicular Crowdsensing DOI
Yesin Sahraoui, Chaker Abdelaziz Kerrache

Internet of things, Год журнала: 2024, Номер unknown, С. 187 - 199

Опубликована: Окт. 18, 2024

Язык: Английский

Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models DOI
Ahmed Bensaoud, Jugal Kalita

Ad Hoc Networks, Год журнала: 2025, Номер 170, С. 103770 - 103770

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

2

Enhancing IoT security: A competitive coevolutionary strategy for detecting RPL attacks in challenging attack environments DOI
Selim Yılmaz

Computer Networks, Год журнала: 2025, Номер unknown, С. 111185 - 111185

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Forensics and security issues in the Internet of Things DOI Creative Commons
Shams Forruque Ahmed,

Shanjana Shuravi Shawon,

Afsana Bhuyian

и другие.

Wireless Networks, Год журнала: 2025, Номер unknown

Опубликована: Март 27, 2025

Язык: Английский

Процитировано

0

Comprehensive review on machine learning and deep learning techniques for malware detection in android and IoT devices DOI
Wesam Almobaideen,

Orieb Abu Alghanam,

Muhammad Abdullah

и другие.

International Journal of Information Security, Год журнала: 2025, Номер 24(3)

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

0

FootprintNet: a Siamese network method for biometric identification using footprints DOI Creative Commons

Nadir İbrahimoğlu,

Amjad Osmani,

Ali Dalir Ghaffari

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(5)

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

0

Analysis of deep learning-based intrusion detection systems in IoT environments DOI

Abdeslem Blali,

Souhayla Dargaoui, Mourade Azrour

и другие.

EDPACS, Год журнала: 2025, Номер unknown, С. 1 - 35

Опубликована: Май 6, 2025

Язык: Английский

Процитировано

0

Exploring the Transformative Impact of IoT-Driven Innovations in Public Transportation Systems for Smart Mobility DOI

Keya N. Patel,

Jigar Sarda, Nilay Patel

и другие.

Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 177 - 193

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Unveiling the core of IoT: comprehensive review on data security challenges and mitigation strategies DOI Creative Commons

Kawalpreet Kaur,

Amanpreet Kaur, Yonis Gulzar

и другие.

Frontiers in Computer Science, Год журнала: 2024, Номер 6

Опубликована: Июнь 26, 2024

The Internet of Things (IoT) is a collection devices such as sensors for collecting data, actuators that perform mechanical actions on the sensor's collected and gateways used an interface effective communication with external world. IoT has been successfully applied to various fields, from small households large industries. environment consists heterogeneous networks billions increasing daily, making system more complex this need privacy security become major concern. critical components are device identification, number sensors, hardware operating systems, semantics services. layers core application presented in paper protocols each layer. challenges at unveiled review along existing mitigation strategies machine learning, deep lightweight encryption techniques, Intrusion Detection Systems (IDS) overcome these future scope. It concluded after doing intensive Spoofing Distributed Denial Service (DDoS) attacks two most common applications. While spoofing tricks systems by impersonating devices, DDoS flood traffic. also compromised other attacks, botnet man-in-middle etc. which call strong defenses including IDS framework, neural networks, multifactor authentication system.

Язык: Английский

Процитировано

1

LCSA-Fed: A low cost semi-asynchronous federated learning based on lag tolerance for services QoS prediction DOI Creative Commons
Lingru Cai,

Yuelong Liu,

Jianlong Xu

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Май 10, 2024

Abstract As a distributed training method, federated learning (FL) has been widely used in the field of quality-of-service (QoS) prediction. However, existing FL-based QoS prediction methods ignore unreliability end devices, which will lead to wasted resources and high communication costs. Considering that instability devices real environments, we propose low cost semi-asynchronous method (LCSA-Fed) based on lag tolerance overcome lower convergence rate suboptimal accuracy models. LCSA-Fed is able reduce model costs by tolerating relatively lagging local At same time, employ innovations both user selection phase aggregation improve while reducing overheads. By conducting relevant validation experiments publicly available dataset, conclude our can effectively overhead accuracy.

Язык: Английский

Процитировано

0

RPL-Shield: A Deep Learning GNN-Based Approach for Protecting IoT Networks from RPL Routing Table Falsification Attacks DOI
Ayoub Krari, Abdelmajid Hajami

Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 117 - 127

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0