Education and Information Technologies, Год журнала: 2024, Номер unknown
Опубликована: Окт. 29, 2024
Язык: Английский
Education and Information Technologies, Год журнала: 2024, Номер unknown
Опубликована: Окт. 29, 2024
Язык: Английский
Review of Education, Год журнала: 2024, Номер 12(2)
Опубликована: Авг. 1, 2024
Abstract Given the potential applications of generative AI (GenAI) in education and its rising interest research, this systematic review mapped thematic landscape 407 publications indexed Web Science, ScienceDirect Scopus. Using EPPI Reviewer, publication type, educational level, disciplines, research areas GenAI were extracted. Eight discursive themes identified, predominantly focused on ‘application, impact potential’, ‘ethical implication risks’, ‘perspectives experiences’, ‘institutional individual adoption’, ‘performance intelligence’. was conceptualised as a tool for ‘pedagogical enhancement’, ‘specialised training practices’, ‘writing assistance productivity’, ‘professional skills development’, an ‘interdisciplinary learning tool’. Key gaps highlighted include paucity discussions K‐12 education; limited exploration GenAI's using experimental procedures; ethical concerns from lens cultural dimensions. Promising opportunities future are highlighted.
Язык: Английский
Процитировано
17Thinking Skills and Creativity, Год журнала: 2024, Номер 53, С. 101619 - 101619
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
8Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Янв. 2, 2025
Язык: Английский
Процитировано
1Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
0Big Data and Cognitive Computing, Год журнала: 2025, Номер 9(4), С. 78 - 78
Опубликована: Март 27, 2025
This study explores factors influencing positive experiences with generative AI (GenAI) in a learning game design context. Using sample of 26 master’s-level students course on AI’s societal aspects, this examines the impact (1) prior knowledge and attitudes toward technology learning, (2) personal value orientations. Results indicated that both students’ self-transcendent goals desire for material benefits have correlations collaborative, cognitive, affective outcomes. However, are stronger predictor, as determined by stepwise regression analysis. Attitudes were positively associated cognitive outcomes during first week, though association did not persist into second week. Most other attitudinal variables collaborative or but linked to negative affect. These findings suggest values correlate more strongly aspects using GenAI educational than their attributes. result may indicate experience neutralizes effect earlier towards technology, major influences deriving from If these borne out, has implications utility current efforts change especially those encourage women STEM topics. Thus, it be that, rather pro-technology instruction, focus orientations would effective way diverse participate programs.
Язык: Английский
Процитировано
0Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0Digital Experiences in Mathematics Education, Год журнала: 2025, Номер unknown
Опубликована: Март 29, 2025
Язык: Английский
Процитировано
0Lecture notes in educational technology, Год журнала: 2025, Номер unknown, С. 98 - 112
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июнь 21, 2024
Язык: Английский
Процитировано
3Discover Education, Год журнала: 2024, Номер 3(1)
Опубликована: Ноя. 25, 2024
The abrupt evolution of Artificial Intelligence (AI) in academia has spurred a complex debate regarding its rejection or integration academia. This study aims to portray comparative analysis the risks associated with AI and missed opportunities absence academic settings. Utilizing economic theory Opportunity Cost as theoretical framework, investigates whether potential gains from adoption outweigh losses. is fundamental principle economics, which determines best alternative between two choices single context, guiding individuals organizations make choice. Adopting qualitative methodology for this systematic review, research employs content analysis. Using Boolean formula, researcher constructed precise search queries retrieve relevant literature across six databases applied specific protocols inclusion exclusion; an initial pool 260 existing literature, 72 studies were selected based on bibliometrics final synthesis avoid fallacy composition, wrong decision about AI. findings indicate that blessings generative significantly risks, leading integrate Although recorded negative aspects, these are not substantial enough undermine overall positive impact AI, it holds considerable promise fostering dynamic environments. inform shape user attitudes toward provides valuable insights institutions, educators, policymakers.
Язык: Английский
Процитировано
2