Perceptions of STEM education and artificial intelligence: a Twitter (X) sentiment analysis DOI Creative Commons
Demetrice Smith-Mutegi, Yoseph Mamo, Jinhee Kim

и другие.

International Journal of STEM Education, Год журнала: 2025, Номер 12(1)

Опубликована: Фев. 11, 2025

Язык: Английский

Venturing into the Unknown: Critical Insights into Grey Areas and Pioneering Future Directions in Educational Generative AI Research DOI
Junhong Xiao, Aras Bozkurt, Mark Nichols

и другие.

TechTrends, Год журнала: 2025, Номер unknown

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

0

Factors Influencing AI-Assisted Thesis Writing in University: A Pull-Push-Mooring Theory Narrative Inquiry Study DOI Creative Commons
Ranta Butarbutar,

Rubén González Vallejo

Data & Metadata, Год журнала: 2025, Номер 4, С. 203 - 203

Опубликована: Фев. 10, 2025

This study aims to examine the factors that motivate, attract, and anchor students adopt AI tools during writing process in context of push-pull-mooring (PPM) theory. Utilizing a narrative inquiry research approach, this employed observation, in-depth interviews, document analysis for data collection. The identified key through reflexive thematic methods. Key pull include generation credit authorship contributions integration into academic writing. encompass topic selection, dynamic literature review, questions, proposal conceptualization, designing methods, analysis, revising drafts, managing references. incorporates active learning, self-regulated learning (SRL), inquiry-based overcoming linguistic challenges. push reference inaccuracies, confidentiality research, overreliance on AI. Three anchoring principles guide ethical incorporation thesis writing: institutional policies, augmentation, comprehensive contextual approach. But study's limitations small sample size ten from single university, which affects generalizability results.

Язык: Английский

Процитировано

0

Exploring the impact of generative artificial intelligence on students’ learning outcomes: a meta-analysis DOI
Yinkun Zhu, Qiwen Liu, Li Zhao

и другие.

Education and Information Technologies, Год журнала: 2025, Номер unknown

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Can student accurately identify artificial intelligence generated content? an exploration of AIGC credibility from user perspective in education DOI
Yulu Cui, Zhang Hai

Education and Information Technologies, Год журнала: 2025, Номер unknown

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

The effect of generative AI use on doctoral students’ academic research progress: the moderating role of hedonic gratification DOI Creative Commons
Denis Samwel Ringo

Cogent Education, Год журнала: 2025, Номер 12(1)

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

0

Evaluating the influence of generative AI on students’ academic performance through the lenses of TPB and TTF using a hybrid SEM-ANN approach DOI
Mostafa Al‐Emran, Mohammed A. Al‐Sharafi, Behzad Foroughi

и другие.

Education and Information Technologies, Год журнала: 2025, Номер unknown

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Relevance and Impact of Generative AI in Vocational Instructional Material Design: A Systematic Literature Review DOI
Fadhli Ranuharja, Ganefri Ganefri, Fahmi Rizal

и другие.

Salud Ciencia y Tecnología, Год журнала: 2025, Номер 5, С. 1636 - 1636

Опубликована: Март 4, 2025

This study examines the relevance and impact of Generative Artificial Intelligence (GenAI) in design instructional materials for vocational education through a systematic literature review following PRISMA guidelines. The draws from reputable databases, including Scopus, Web Science (WoS), ERIC, to identify peer-reviewed articles published between 2019 2024. After applying inclusion exclusion criteria, 28 eligible were analyzed. findings highlight that GenAI significantly enhances material by supporting personalized learning, automating content creation, improving accessibility. It enables development adaptive high-quality resources tailored diverse learner needs education. Furthermore, visualizes research trends using bibliometric analysis, providing insights into evolution distribution GenAI-related across time, regions, themes. However, challenges such as need digital competency among educators, ethical concerns regarding bias quality, potential over-reliance on AI tools are identified. underscores importance balancing AI-driven innovation with human-centered ensure effective sustainable educational practices. Practical recommendations include targeted professional programs frameworks guide integration

Язык: Английский

Процитировано

0

Um panorama das diretrizes relacionadas ao uso de inteligência artificial nos principais periódicos da Área Interdisciplinar da CAPES DOI Creative Commons
Raphael de Aquino Gomes, Thiago Augusto Mendes

Encontros Bibli Revista Eletrônica de Biblioteconomia e Ciência da Informação, Год журнала: 2025, Номер 30, С. 1 - 20

Опубликована: Март 17, 2025

Objetivo: Realizar uma análise sobre como os principais periódicos, considerando a Área Interdisciplinar da CAPES, tratam em suas diretrizes de preparação artigos e revisão o uso ferramentas Inteligência Artificial (IA) generativa. Método: Trata-se pesquisa descritiva quantitativa, que analisa portais web dos periódicos selecionados com base na quantidade trabalhos publicados programas pós-graduação envolvidos entre anos 2017 2022. Os dados usados seleção foram obtidos nos abertos plataforma Sucupira resultados gerados partir das informações disponibilizadas pelos periódicos. Resultado: Apenas 20,5% analisados mencionam IA generativa nas para elaboração trabalhos, apenas 7,5% no processo submetidos 6% ambos processos. Foi observado relação menção ao impacto as métricas Qualis, CiteScore, JIF H5, assim custo publicação. Conclusões: Observou-se direta Periódicos orientações mais rigorosas tendem apresentar maiores valores nessas custos elevados, sugerindo maior prestígio adotam posturas restritivas quanto dessas tecnologias.

Процитировано

0

A Comparative Study of Six Indigenous Chinese Large Language Models' Understanding Ability: An Assessment Based on 132 College Entrance Examination Objective Test Items DOI Creative Commons
H. Le,

Qiuling Zhang,

Gang Xu

и другие.

Research Square (Research Square), Год журнала: 2025, Номер unknown

Опубликована: Март 26, 2025

Abstract To assist Chinese language teachers in making evidence-based choices of useful and user-friendly domestic large models teaching research, the study took 132 objective questions from national college entrance examination papers 2021 to 2023 as data set assess performance six models, namely Tongyi Qianwen, GLM-4, KimiChat, Baichuan, Wenxin Yiyan, Xunfei Spark, semantic understanding. The assessment revealed that overall correct rates responses above were 70%, 69%, 57%, 55%, 60%, 62% respectively. Among them, Qianwen Spark performed best application questions, with 74% each; GLM-4 ancient poetry reading modern text reaching 92% 77% classical was not ideal. For wrongly answered test researchers corrected analyzed answers using prompt strategy. Finally, paper put forward several suggestions for promoting assistance research.

Язык: Английский

Процитировано

0

Pan-indexicality and prompt: developing a teaching model for AI-mediated academic writing DOI Creative Commons
Jing Zhu, Chunyun Duan

Language and Semiotic Studies, Год журнала: 2025, Номер unknown

Опубликована: Апрель 4, 2025

Abstract AI-mediated academic writing calls for new pedagogical approaches to the application of prompt engineering courses. Whereas previous studies mainly inform students techniques, little is known about how functions from perspective meaning negotiation between human and generative AI. This paper explores integration Pan-indexical process linguistic signs into a prompt-based teaching model (PBTM), emphasizing its potential facilitate in during early stage writing. The PBTM consists four key components: encyclopedic knowledge, contextual information, evaluative critical thinking, iterative design. lies idea development organized around major steps: crafting initial prompt; refining with information; engaging thinking; progression toward desired response. suggests that linguistics can be employed enhance students’ ability optimization prompts through deeper understanding AI support their process.

Язык: Английский

Процитировано

0