Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Язык: Английский
Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Язык: Английский
Multimodal Technologies and Interaction, Год журнала: 2025, Номер 9(1), С. 3 - 3
Опубликована: Янв. 7, 2025
Massive open online courses have revolutionised the learning environment, but their effectiveness is undermined by low completion rates. Traditional dropout prediction models in MOOCs often overlook complex factors like temporal dependencies and context-specific variables. These are not adaptive enough to manage dynamic nature of MOOC environments, resulting inaccurate predictions ineffective interventions. Accordingly, require more sophisticated artificial intelligence that can address these limitations. Moreover, incorporating feature selection methods explainable AI techniques enhance interpretability models, making them actionable for educators course designers. This paper provides a comprehensive review various methodologies, focusing on strategies research gaps. It highlights growing environment potential technology-driven gains outcome accuracy. also discusses use advanced based machine learning, deep meta-heuristics approaches improve rates, optimise outcomes, provide personalised educational experiences.
Язык: Английский
Процитировано
1Education and Information Technologies, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
0