Risk assessment of potentially toxic elements and mapping of groundwater pollution indices using soft computer models in an agricultural area, Northeast Algeria
Journal of Hazardous Materials,
Год журнала:
2025,
Номер
unknown, С. 137991 - 137991
Опубликована: Март 1, 2025
Язык: Английский
Spatial Dynamics and Ecotoxicological Health Hazards of Toxic Metals in Surface Water Impacted by Agricultural Runoff: Insights from Gis-Based Risk Assessment in the Sebou Basin, Morocco
Опубликована: Янв. 1, 2025
Язык: Английский
Integrating Unsupervised Machine Learning, Statistical Analysis, and Monte Carlo Simulation to Assess Toxic Metal Contamination and Salinization in Non-Rechargeable Aquifers
Results in Engineering,
Год журнала:
2025,
Номер
unknown, С. 104989 - 104989
Опубликована: Апрель 1, 2025
Язык: Английский
An advanced approach for drinking water quality indexing and health risk assessment supported by machine learning modelling in Siwa Oasis, Egypt
Journal of Hydrology Regional Studies,
Год журнала:
2024,
Номер
56, С. 101967 - 101967
Опубликована: Сен. 16, 2024
Язык: Английский
Spatial Distribution and Trend Analysis of Groundwater Contaminants Using the ArcGIS Geostatistical Analysis (Kriging) Algorithm; The case of Gurage Zone, Ethiopia
Abel Amsalu Ayalew,
Moges Tariku Tegenu
Research Square (Research Square),
Год журнала:
2024,
Номер
unknown
Опубликована: Окт. 24, 2024
Abstract
The
study
explores
the
spatial
distribution
and
trends
of
groundwater
pollutants
focusing
on
calcium
four
other
key
water
quality
parameters
in
Gurage
Zone,
Ethiopia,
2024.
It
uses
ArcGIS
geostatistical
analysis
tool
with
Kriging
algorithm
to
map
analyze
variability
contaminants.
primary
aim
is
identify
areas
high
levels
understand
patterns.
identifies
contamination
hotspots
associated
natural
processes
human
activities.
Twenty-seven
samples
were
collected
from
various
sites,
like
calcium,
total
dissolved
solids,
hardness,
conductivity,
alkalinity
measured.
findings
show
that
contaminants
varies
significantly
across
different
areas,
some
exceeding
safe
drinking
limits.
reveals
southern
region
has
highest
concentration,
shallow
local
boreholes.
deeper
wells
have
higher
conductivity.
trend
shows
increased
pollutant
along
X
Y
axes.
model
effectively
predicted
unsampled
offering
a
reliable
technique
aimed
at
monitoring.
provides
important
insights
for
authorities
implement
interventions
protection
Zone.
Язык: Английский