Spatial Distribution and Trend Analysis of Groundwater Contaminants Using the ArcGIS Geostatistical Analysis (Kriging) Algorithm; The case of Gurage Zone, Ethiopia DOI Creative Commons

Abel Amsalu Ayalew,

Moges Tariku Tegenu

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Окт. 24, 2024

Abstract The study explores the spatial distribution and trends of groundwater pollutants focusing on calcium four other key water quality parameters in Gurage Zone, Ethiopia, 2024. It uses ArcGIS geostatistical analysis tool with Kriging algorithm to map analyze variability contaminants. primary aim is identify areas high levels understand patterns. identifies contamination hotspots associated natural processes human activities. Twenty-seven samples were collected from various sites, like calcium, total dissolved solids, hardness, conductivity, alkalinity measured. findings show that contaminants varies significantly across different areas, some exceeding safe drinking limits. reveals southern region has highest concentration, shallow local boreholes. deeper wells have higher conductivity. trend shows increased pollutant along X Y axes. model effectively predicted unsampled offering a reliable technique aimed at monitoring. provides important insights for authorities implement interventions protection Zone.

Язык: Английский

Risk assessment of potentially toxic elements and mapping of groundwater pollution indices using soft computer models in an agricultural area, Northeast Algeria DOI
Azzeddine Reghais, Abdelmalek Drouiche, Faouzi Zahi

и другие.

Journal of Hazardous Materials, Год журнала: 2025, Номер unknown, С. 137991 - 137991

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Spatial Dynamics and Ecotoxicological Health Hazards of Toxic Metals in Surface Water Impacted by Agricultural Runoff: Insights from Gis-Based Risk Assessment in the Sebou Basin, Morocco DOI
Hatim Sanad, Rachid Moussadek,

Latifa Mouhir

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Integrating Unsupervised Machine Learning, Statistical Analysis, and Monte Carlo Simulation to Assess Toxic Metal Contamination and Salinization in Non-Rechargeable Aquifers DOI Creative Commons
Mohamed Hamdy Eid, Omar Saeed, András Székács

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104989 - 104989

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

An advanced approach for drinking water quality indexing and health risk assessment supported by machine learning modelling in Siwa Oasis, Egypt DOI Creative Commons
Mohamed Hamdy Eid, Viktória Mikita, Mustafa Eissa

и другие.

Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 56, С. 101967 - 101967

Опубликована: Сен. 16, 2024

Язык: Английский

Процитировано

1

Spatial Distribution and Trend Analysis of Groundwater Contaminants Using the ArcGIS Geostatistical Analysis (Kriging) Algorithm; The case of Gurage Zone, Ethiopia DOI Creative Commons

Abel Amsalu Ayalew,

Moges Tariku Tegenu

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Окт. 24, 2024

Abstract The study explores the spatial distribution and trends of groundwater pollutants focusing on calcium four other key water quality parameters in Gurage Zone, Ethiopia, 2024. It uses ArcGIS geostatistical analysis tool with Kriging algorithm to map analyze variability contaminants. primary aim is identify areas high levels understand patterns. identifies contamination hotspots associated natural processes human activities. Twenty-seven samples were collected from various sites, like calcium, total dissolved solids, hardness, conductivity, alkalinity measured. findings show that contaminants varies significantly across different areas, some exceeding safe drinking limits. reveals southern region has highest concentration, shallow local boreholes. deeper wells have higher conductivity. trend shows increased pollutant along X Y axes. model effectively predicted unsampled offering a reliable technique aimed at monitoring. provides important insights for authorities implement interventions protection Zone.

Язык: Английский

Процитировано

1