Methods in molecular biology, Год журнала: 2024, Номер unknown, С. 149 - 162
Опубликована: Янв. 1, 2024
Язык: Английский
Methods in molecular biology, Год журнала: 2024, Номер unknown, С. 149 - 162
Опубликована: Янв. 1, 2024
Язык: Английский
Bioinformatics, Год журнала: 2024, Номер 41(1)
Опубликована: Ноя. 25, 2024
Abstract Motivation Peptides and their derivatives hold potential as therapeutic agents. The rising interest in developing peptide drugs is evidenced by increasing approval rates the FDA of USA. To identify most peptides, study on peptide-protein interactions (PepPIs) presents a very important approach but poses considerable technical challenges. In experimental aspects, transient nature PepPIs high flexibility peptides contribute to elevated costs inefficiency. Traditional docking molecular dynamics simulation methods require substantial computational resources, predictive accuracy results remain unsatisfactory. Results address this gap, we proposed TPepPro, Transformer-based model for PepPI prediction. We trained TPepPro dataset 19,187 pairs complexes with both sequential structural features. utilizes strategy that combines local protein sequence feature extraction global structure extraction. Moreover, optimizes architecture featuring neural network BN-ReLU arrangement, which notably reduced amount computing resources required According comparison analysis, reached 0.855 achieving an 8.1% improvement compared second-best TAGPPI. achieved AUC 0.922, surpassing TAGPPI 0.844. newly developed certain can be validated according previous evidence, thus indicating efficiency detect would helpful amino acid drug applications. Availability implementation source code available at https://github.com/wanglabhku/TPepPro.
Язык: Английский
Процитировано
1Frontiers in Oncology, Год журнала: 2023, Номер 13
Опубликована: Фев. 23, 2023
Host-pathogen interactions (HPIs) affect and involve multiple mechanisms in both the pathogen host. Pathogen disrupt homeostasis host cells, with their toxins interfering mechanisms, resulting infections, diseases, disorders, extending from AIDS COVID-19, to cancer. Studies of three-dimensional (3D) structures host-pathogen complexes aim understand how pathogens interact hosts. They also contribute development rational therapeutics, as well preventive measures. However, structural studies are fraught challenges toward these aims. This review describes state-of-the-art protein-protein (PPIs) between standpoint. It discusses computational aspects predicting PPIs, including machine learning (ML) artificial intelligence (AI)-driven, overviews available methods challenges. concludes examples theoretical approaches can result a therapeutic agent potential being used clinics, future directions.
Язык: Английский
Процитировано
2Blockchain technologies, Год журнала: 2024, Номер unknown, С. 369 - 417
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Methods in molecular biology, Год журнала: 2024, Номер unknown, С. 107 - 126
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Methods in molecular biology, Год журнала: 2024, Номер unknown, С. 149 - 162
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0