Опубликована: Ноя. 2, 2024
Язык: Английский
Опубликована: Ноя. 2, 2024
Язык: Английский
International Journal of Computational and Experimental Science and Engineering, Год журнала: 2024, Номер 10(4)
Опубликована: Окт. 8, 2024
COVID-19 has affected hundreds of millions individuals, seriously harming the global population’s health, welfare, and economy. Furthermore, health facilities are severely overburdened due to record number cases, which makes prompt accurate diagnosis difficult. Automatically identifying infected individuals promptly placing them under special care is a critical step in reducing burden such issues. Convolutional Neural Networks (CNN) other machine learning techniques can be utilized address this demand. Many existing Deep models, albeit producing intended outcomes, were developed using parameters, making unsuitable for use on devices with constrained resources. Motivated by fact, novel lightweight deep model based Efficient Channel Attention (ECA) module SqueezeNet architecture, work identify patients from chest X-ray CT images initial phases disease. After proposed was tested different datasets two, three four classes, results show its better performance over models. The outcomes shown that, comparison current heavyweight our models reduced cost memory requirements computing resources dramatically, while still achieving comparable performance. These support notion that help diagnose Covid-19 being easily implemented low-resource low-processing devices.
Язык: Английский
Процитировано
21Computers in Biology and Medicine, Год журнала: 2025, Номер 186, С. 109659 - 109659
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
2Biomedical Signal Processing and Control, Год журнала: 2024, Номер 93, С. 106133 - 106133
Опубликована: Март 2, 2024
Язык: Английский
Процитировано
5Connection Science, Год журнала: 2024, Номер 36(1)
Опубликована: Июнь 12, 2024
The development of vaccines and drugs is very important in combating the coronavirus disease 2019 (COVID-19) virus. effectiveness these developed has decreased as a result mutation COVID-19 Therefore, it to combat mutations. majority studies published literature are other than prediction. We focused on this gap study. This study proposes robust transformer encoder based model with Adam optimizer algorithm called TfrAdmCov for Our main motivation predict mutations occurring virus using proposed model. experimental results have shown that outperforms both baseline models several state-of-the-art models. reached accuracy 99.93%, precision 100.00%, recall 97.38%, f1-score 98.67% MCC 98.65% testing dataset. Moreover, evaluate performance model, we carried out prediction influenza A/H3N2 HA obtained promising drugs.
Язык: Английский
Процитировано
3Multimedia Tools and Applications, Год журнала: 2024, Номер unknown
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
3Annals of Mathematics and Artificial Intelligence, Год журнала: 2025, Номер unknown
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
0AgriEngineering, Год журнала: 2025, Номер 7(5), С. 127 - 127
Опубликована: Апрель 22, 2025
Egyptian cotton fibres have worldwide recognition due to their distinct quality and luxurious textile products known by the “Egyptian Cotton“ label. However, fibre trading in Egypt still depends on human grading of quality, which is resource-intensive faces challenges terms subjectivity expertise requirements. This study investigates colour vision transfer learning classify grade five long (Giza 86, Giza 90, 94) extra-long 87 96) staple cultivars. Five Convolutional Neural networks (CNNs)—AlexNet, GoogleNet, SqueezeNet, VGG16, VGG19—were fine-tuned, optimised, tested independent datasets. The highest classifications were 75.7%, 85.0%, 80.0%, 77.1%, 90.0% for 87, 94, 96, respectively, with F1-Scores ranging from 51.9–100%, 66.7–100%, 42.9–100%, 40.0–100%, 80.0–100%. Among CNNs, AlexNet, VGG19 outperformed others. Fused CNN models further improved classification accuracy up 7.2% all cultivars except 87. These results demonstrate feasibility developing a fast, low-cost, low-skilled system that overcomes inconsistencies limitations manual early stages Egypt.
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105154 - 105154
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 109, С. 108052 - 108052
Опубликована: Май 8, 2025
Язык: Английский
Процитировано
0