Darcy–Forchheimer thin film flow of the Carreau nanofluid down an inclined unsteady rotating disk through CVFEM solution and neural computing DOI
A. A. Alderremy, Malik Zaka Ullah, Wajdi Alghamdi

и другие.

Journal of Thermal Analysis and Calorimetry, Год журнала: 2025, Номер unknown

Опубликована: Май 31, 2025

Язык: Английский

The flow of hybrid nanofluids between nonparallel stretching walls using neural network and control volume finite element method DOI

M. M. Alqarni,

Sultan Alghamdi, Malik Zaka Ullah

и другие.

International Journal of Numerical Methods for Heat &amp Fluid Flow, Год журнала: 2025, Номер unknown

Опубликована: Май 13, 2025

Purpose This study aims to examine how Ag and TiO 2 hybrid nanofluids (HNFs) move through a nonparallel stretching channel improve heat transfer (HT). Design/methodology/approach Stretching walls that converge diverge are responsible for the influence on (Ag ) HNF flow. The absorption omission viscous dissipation characters also included in model increase HT rate. governing equations solved control volume finite element method (CVFEM) using (FEA Tool-Multiphysics) software. Solving transformed is done Wavelet-based physics-informed neural network. Findings behavior of nanoparticle (NP) properties evaluated by presenting results as NP concentration, illustrated streamlines, isotherms average Nusselt numbers. impact parameters such Eckert number, absorption, parameter, Magnetic field, Reynold number shrinking has been observed. statistical analysis revealed an 11.8% improvement HT. (mean squared error) (error normalized observed with best validation A comparison made validate obtained results. Research limitations/implications main contribution stretched concept solution CVFEM unsupervised network, which were not focused earlier converging diverging combination . extension possible case other nanomaterials experimental analysis. Practical implications provides intriguing assess microscopic view crucial thermodynamic processes ultimately lead optimal thermal configuration. Social Renewable energy most important factor human development this investigation focuses sources. Originality/value contributions

Язык: Английский

Процитировано

1

Application of Levenberg-Marquardt artificial neural network to study nanoparticle aggregation phenomena in stagnation point flow towards an off-centered rotating disk DOI Creative Commons

Prateek Kattimani,

Koushik V. Prasad,

Talha Anwar

и другие.

International Journal of Thermofluids, Год журнала: 2025, Номер unknown, С. 101276 - 101276

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Dynamics of time-dependent Ag and TiO2/blood Casson hybrid nanofluid squeezing flow past a Riga plate subject to an artificial neural network approach: an application to drug delivery DOI

M. M. Alqarni,

Emad E. Mahmoud, Mansourah Aljohani

и другие.

Mechanics of Time-Dependent Materials, Год журнала: 2025, Номер 29(2)

Опубликована: Май 30, 2025

Язык: Английский

Процитировано

0

Darcy–Forchheimer thin film flow of the Carreau nanofluid down an inclined unsteady rotating disk through CVFEM solution and neural computing DOI
A. A. Alderremy, Malik Zaka Ullah, Wajdi Alghamdi

и другие.

Journal of Thermal Analysis and Calorimetry, Год журнала: 2025, Номер unknown

Опубликована: Май 31, 2025

Язык: Английский

Процитировано

0