
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 30, 2024
Accurate estimation of the soil resilient modulus (M
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 30, 2024
Accurate estimation of the soil resilient modulus (M
Язык: Английский
Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
2Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(2)
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
1Measurement, Год журнала: 2025, Номер unknown, С. 117180 - 117180
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Pure and Applied Geophysics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
0Powder Technology, Год журнала: 2025, Номер unknown, С. 120638 - 120638
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(7), С. 1021 - 1021
Опубликована: Март 21, 2025
Tunnel infrastructures worldwide face escalating deterioration challenges due to aging materials, increasing load demands, and exposure harsh environmental conditions. Accurately predicting the onset progression of is paramount for ensuring structural safety, optimizing maintenance interventions, prolonging service life. However, complex interplay environmental, material, operational factors poses significant current predictive models. Additionally, they are constrained by small datasets a narrow range tunnel elements that limit their generalizability. This paper presents novel hybrid metaheuristic-based regression tree (REGT) model designed enhance accuracy robustness predictions. Leveraging metaheuristic algorithms’ strengths, developed method jointly optimizes critical hyperparameters identifies most relevant features prediction. A comprehensive dataset encompassing material properties, stressors, traffic loads, historical condition assessments was compiled development. Comparative analyses against conventional trees, artificial neural networks, support vector machines demonstrated consistently outperformed baseline techniques regarding While trees classic machine learning models, no single variant dominated all elements. Furthermore, optimization framework mitigated overfitting provided interpretable insights into primary driving deterioration. Finally, findings this research highlight potential models as powerful tools infrastructure management, offering actionable predictions enable proactive strategies resource optimization. study contributes advancing field modeling in civil engineering, with implications sustainable management infrastructure.
Язык: Английский
Процитировано
0Опубликована: Май 30, 2024
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Окт. 3, 2024
Язык: Английский
Процитировано
0Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)
Опубликована: Янв. 1, 2024
Abstract The application and development of intelligent technology in the field public management has accelerated governance mode change process evolution. As a new direction system technological innovation era, holistic smart high theoretical coupling with grassroots governance. Based on transformation path governance, study designs model for then measures effectiveness using static DEA dynamic Malmquist index model. Subsequently, data from 16 regions Province M are taken as examples empirical analysis, augmented regression number is utilized to explore relative strengths influencing factors ways them. results show that M4, M7, M9, M12, M13 M15, six realize effective, but average value annual greater than 1 only M12 some have poor capacity, production difficult innovate, capacity not coordinated input = 3055 under tree ratio housing expenditure per capita disposable income greatest impact society (27.54%), which needs be focused on. concludes can realized five areas: philosophy, objectives, approach, structure, path.
Язык: Английский
Процитировано
0International Journal of Mining Science and Technology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0