Koreksi Bias Data Hujan Proyeksi Coupled Model Intercomparison Project Phase 6 (Cmip6) Di Kota Bima
I Putu Hartawan,
Muhamad Zaky Ibnu Malik,
Laifhan Setyo Qhairaan
и другие.
Cerdika Jurnal Ilmiah Indonesia,
Год журнала:
2025,
Номер
5(1), С. 57 - 66
Опубликована: Янв. 15, 2025
Perubahan
iklim
global
telah
memengaruhi
pola
curah
hujan,
khususnya
di
wilayah
tropis,
termasuk
Kota
Bima.
Model
proyeksi
seperti
Coupled
Intercomparison
Project
Phase
6
(CMIP6)
menyediakan
data
penting
untuk
memprediksi
perubahan
iklim,
namun
sering
kali
mengandung
bias
yang
signifikan.
Penelitian
ini
bertujuan
melakukan
koreksi
pada
hujan
CMIP6
menggunakan
lima
model
dalam
skenario
SSP5-8.5,
yaitu
CMCC-CM2-SR5,
CESM2-WACCM,
ACCESS-CM2,
CESM2,
dan
AWI-CM-1-1-MR,
dengan
mengintegrasikan
historis
dari
Global
Precipitation
Climatology
Centre
(GPCC)
lokal
BMKG.
Hasil
penelitian
menunjukkan
bahwa
GPCC
memiliki
korelasi
sangat
kuat
BMKG,
nilai
koefisien
sebesar
0,97
RMSE
34,41
mm.
empat
(CESM2-WACCM,
AWI-CM-1-1-MR)
tren
serupa
berdasarkan
analisis
Weibull
plotting.
Sementara
itu,
CMCC-CM2-SR5
penyimpangan
Implikasi
adalah
meningkatkan
akurasi
mendukung
perencanaan
mitigasi
risiko
bencana
pengelolaan
sumber
daya
air
juga
membuka
peluang
pengembangan
metode
lebih
efisien
teknologi
pembelajaran
mesin
rinci.
Investigating the Future Precipitation Changes Over the Kingdom of Bahrain Using CMIP6 Projections
Earth Systems and Environment,
Год журнала:
2025,
Номер
unknown
Опубликована: Фев. 5, 2025
Язык: Английский
Future Projections of Clouds and Precipitation Patterns in South Asia: Insights from CMIP6 Multi-Model Ensemble Under SSP5 Scenarios
Praneta Khardekar,
Rohini Bhawar,
Vinay Kumar
и другие.
Climate,
Год журнала:
2025,
Номер
13(2), С. 36 - 36
Опубликована: Фев. 8, 2025
Projecting
future
changes
in
monsoon
rainfall
is
crucial
for
effective
water
resource
management,
food
security,
and
livestock
sustainability
South
Asia.
This
study
assesses
precipitation,
total
cloud
cover
(categorized
by
top
pressure),
outgoing
longwave
radiation
(OLR)
across
the
region
using
Coupled
Model
Intercomparison
Project
Phase
6
(CMIP6)
data.
A
multi-model
ensemble
(MME)
approach
employed
to
analyze
projections
under
Shared
Socio-Economic
Pathway
(SSP5-8.5)
scenario,
which
assumes
radiative
forcing
will
reach
8.5
W/m2
2100.
The
MME
projects
a
~1.5
mm/day
increase
during
2081–2100.
Convective
stratiform
precipitation
are
expected
expand
spatially,
with
convective
increasing
from
3
historical
simulations
3.302
far
future.
Stratiform
also
shows
an
0.822
0.962
over
same
period.
notable
decrease
OLR
(~60
along
Western
Ghats)
high
suggest
intensified
rainfall.
pattern
correlation
coefficient
(PCC)
reveals
reduced
scenarios
(PCC
~0.77
vs.
~0.81
historically),
likely
due
feedback
mechanisms.
These
results
highlight
enhanced
monsoonal
activity
warming
scenarios,
implications
regional
climate
adaptation.
Язык: Английский
Can CMIP6 Models Accurately Reproduce Terrestrial Evapotranspiration Across China?
International Journal of Climatology,
Год журнала:
2025,
Номер
unknown
Опубликована: Фев. 24, 2025
ABSTRACT
Terrestrial
evapotranspiration
(ET)
plays
a
fundamental
role
in
the
climate
system.
The
Coupled
Model
Intercomparison
Project
Phase
6
(CMIP6)
provides
valuable
framework
for
assessing
global
model
performance,
but
gaps
remain
evaluating
its
ET
estimates,
particularly
China.
To
fill
this
gap,
we
employed
Global
Land
Evaporation
Amsterdam
(GLEAM)
and
water
balance
method
to
validate
CMIP6
outputs
from
1980
2014
at
both
national
river
basin
scales.
Key
findings
include:
(1)
GLEAM
performs
comparably
method,
making
it
reliable
validating
outputs.
From
2014,
annual
mean
China
ranges
355
411
mm/year.
In
contrast,
most
models
overestimate
ET,
with
multi‐model
ensemble
(MME)
ranging
524
542
mm/year,
showing
considerable
variation
among
models.
Spatially,
MME
overestimates
across
over
90%
of
Bayesian
averaging
(BMA)
results
align
closely
reference
data,
overestimation
concentrated
southwest
(2)
At
scale,
trends
range
−0.36
0.58
mm/year
2
,
which
contrasts
sharply
trend
1.27
.
compared
GLEAM,
discrepancies
evident
major
basins.
smallest
difference
simulation
occurs
Northwest
River
basin,
where
distributions
are
more
concentrated,
while
largest
appear
Pearl
performance
is
scattered.
Furthermore,
signal‐to‐noise
ratio
(SNR)
analysis
reveals
high
consistency
regions
such
as
Haihe,
Yellow,
Yangtze,
Songliao
basins,
indicating
these
areas.
This
study
contributes
enhancing
reliability
accuracy
projections,
essential
informed
decision‐making
policy
formulation
atmospheric
science.
Язык: Английский
Projection of precipitation and temperature in major cities of Pakistan using multi-model ensembles
Urban Climate,
Год журнала:
2025,
Номер
61, С. 102430 - 102430
Опубликована: Апрель 17, 2025
Язык: Английский
Detection, attribution, and modeling of climate change: Key open issues
Gondwana Research,
Год журнала:
2025,
Номер
unknown
Опубликована: Май 1, 2025
Язык: Английский
Historical and projected extreme climate changes in the upper Yellow River Basin, China
Scientific Reports,
Год журнала:
2025,
Номер
15(1)
Опубликована: Май 30, 2025
Considering
plateau
climate
and
complex
terrain
of
the
upper
Yellow
River
Basin,
understanding
changes
in
extremes
has
become
increasingly
urgent.
This
study
highlighted
historical
from
1960
to
2022
based
on
20
extreme
indices,
future
until
2100
under
two
Shared
Socioeconomic
Pathways
(SSP126
SSP585)
Coupled
Model
Intercomparison
Project
phase
6
(CMIP6)
models.
We
found
that
spatial
temporal
evolutions
precipitation
(PEs)
temperature
(TEs)
primarily
exhibit
increasing
trends.
The
frequency
intensity
PEs
show
an
trend,
while
duration
shows
a
decreasing
trend.
Both
cold
extremes,
as
well
intensity,
frequency,
warm
Future
TEs
are
expected
continue
intensify
even
most
ideal
scenario
(i.e.,
SSP126),
these
anticipated
further
with
radiative
forcing
levels
greenhouse
gas
concentrations.
Results
could
provide
scientific
references
for
better
coping
regions
scarce
observation
station.
Язык: Английский
Hydrological Response to Climate Change: McGAN for Multi-Site Scenario Weather Series Generation and LSTM for Streamflow Modeling
Atmosphere,
Год журнала:
2024,
Номер
15(11), С. 1348 - 1348
Опубликована: Ноя. 9, 2024
This
study
focuses
on
the
impacts
of
climate
change
hydrological
processes
in
watersheds
and
proposes
an
integrated
approach
combining
a
weather
generator
with
multi-site
conditional
generative
adversarial
network
(McGAN)
model.
The
incorporates
ensemble
GCM
predictions
to
generate
regional
average
synthetic
series,
while
McGAN
transforms
these
averages
into
spatially
consistent
data.
By
addressing
spatial
consistency
problem
generating
this
tackles
key
challenge
site-scale
impact
assessment.
Applied
Jinghe
River
Basin
west-central
China,
generated
daily
temperature
precipitation
data
for
four
stations
under
different
shared
socioeconomic
pathways
(SSP1-26,
SSP2-45,
SSP3-70,
SSP5-85)
up
2100.
These
were
then
used
long
short-term
memory
(LSTM)
network,
trained
historical
data,
simulate
river
flow
from
2021
results
show
that
(1)
effectively
addresses
correlation
generation;
(2)
future
is
likely
increase
flow,
particularly
high-emission
scenarios;
(3)
frequency
extreme
events
may
increase,
proactive
policies
can
mitigate
flood
drought
risks.
offers
new
tool
hydrologic–climatic
assessment
studies.
Язык: Английский