Hydrodynamic force characterization and experiments of underwater piezoelectric flexible structure DOI
Junqiang Lou,

Zekai Wang,

Mulin Yang

и другие.

International Journal of Mechanical Sciences, Год журнала: 2024, Номер 282, С. 109581 - 109581

Опубликована: Июль 22, 2024

Язык: Английский

Thermal vibration analysis of FG-GPLRC doubly curved shells partially resting on Kerr foundation based on higher-order shear deformation theory DOI
Vu Ngoc Viet Hoang, Peng Shi, Lester Toledo

и другие.

Thin-Walled Structures, Год журнала: 2023, Номер 195, С. 111357 - 111357

Опубликована: Ноя. 8, 2023

Язык: Английский

Процитировано

16

Unified nonlinear dynamic model for shells of revolution with arbitrary shaped meridians DOI

Jie Xu,

Xuegang Yuan, Yan Qing Wang

и другие.

Aerospace Science and Technology, Год журнала: 2024, Номер 146, С. 108910 - 108910

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

4

Nonlinear stochastic vibration of GPRMF cylindrical shell with harmonic and white noise excitations DOI

Liyuan Wang,

Dongxu Cao,

Jiayang Gu

и другие.

Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2025, Номер 142, С. 108592 - 108592

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

0

Unified vibration modeling of shell and plate structures with resonators DOI
Zhibing Li, Guoyong Jin, Yukun Chen

и другие.

International Journal of Mechanical Sciences, Год журнала: 2025, Номер unknown, С. 109921 - 109921

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Nonlinear Vibration Analysis of Axially Moving Truncated Porous Composite Conical Shells Reinforced with Graphene Nanoplatelets DOI
Xiaolin Huang,

Yuhua Wei,

Wenjie Mo

и другие.

Journal of Vibration Engineering & Technologies, Год журнала: 2025, Номер 13(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Primary and internal coupled resonant behaviors of temperature-dependent composite corrugated cylindrical shells with initial defects in a thermal field DOI
Bocheng Dong, Kaiping Yu, Rui Zhao

и другие.

Aerospace Science and Technology, Год журнала: 2024, Номер 151, С. 109250 - 109250

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

3

Nonlinear Forced Vibration of Curved Beam with Nonlinear Viscoelastic Ends DOI
Nazira Mohamed, S.A. Mohamed, Mohamed A. Eltaher

и другие.

International Journal of Applied Mechanics, Год журнала: 2024, Номер 16(03)

Опубликована: Янв. 8, 2024

This article develops a mathematical formulation to investigate the nonlinear forced vibration of curved viscoelastic beam with boundary conditions around buckled position numerically, for first time. The integro-differential equation buckling problem and corresponding nonhomogeneous are discretized by differential integral quadrature method (DIQM) after that, they solved via Newton-iterative compute static deflection paths. By employing DIQM, linear is converted eigenvalue that easily. Galerkin technique implemented reduce partial governing dynamic into Duffing-type equation. Duffing periodic spectral differentiation matrix operators. Finally, pseudo-arc length continuation algorithm applied solve resulting from duffing Validation numerical techniques in solutions proved previous works. Parametric studies conducted deliberate influences amplitude initial curvature, axial load, support parameters on behaviors straight beams. It should be noted proposed computes both stable unstable solutions.

Язык: Английский

Процитировано

2

Chaos and bifurcation analyses of functionally graded composite spherical shallow shells reinforced with graphene nanoplatelets DOI Creative Commons
Hongyan Chen, Wei Li

Results in Physics, Год журнала: 2024, Номер 58, С. 107461 - 107461

Опубликована: Фев. 10, 2024

Functionally graded (FG) graphene nanoplatelets reinforced composite (FG-GPLRC) structures are expected to be greatly developed in engineering due their excellent mechanical properties. The nonlinear dynamic behaviors such as chaos and bifurcation particularly important. This article explores the dynamics of FG-GPLRC shallow shells with three different GPL distribution patterns under transverse in-plane excitation. effective material properties were calculated using an improved Halpin-Tsai model mixture rule. Using Hamilton's principle high-order shear deformation theory (HSDT) design a mathematical simply supported spherical shells. Numerical analysis shows that weight fraction, layer number, length-to-thickness ratio have significant effects on behavior. These parameters varying sensitivities patterns. X-shaped is more capable withstanding larger external excitation compared U-shaped O-shaped. O-type sensitive number. behavior two modes also after exceeding critical value. focuses providing theoretical guidance for practical by simulating complex excitations.

Язык: Английский

Процитировано

2

Nonlinear Forced Vibration of a Concentrated Mass Loaded Axially Moving Plate Considering the Gravity Effect DOI

Mingjun Song,

Guo Yao

Journal of Vibration Engineering & Technologies, Год журнала: 2024, Номер unknown

Опубликована: Март 16, 2024

Язык: Английский

Процитировано

2

Nonlinear resonance of a rotating ferromagnetic functionally graded cylindrical shell in harmonic magnetic and thermal fields DOI
Tao Yang, Yuda Hu,

Fenghe Wu

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер 112(23), С. 20725 - 20753

Опубликована: Авг. 17, 2024

Язык: Английский

Процитировано

2