
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 29, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 29, 2024
Язык: Английский
Measurement Science and Technology, Год журнала: 2024, Номер 35(11), С. 116007 - 116007
Опубликована: Авг. 1, 2024
Abstract Mechanical faults in manufacturing systems need to be diagnosed accurately ensure safety and cost savings. With the development of sensor technologies, data from multiple sensors is frequently utilized assess health intricate industrial systems. In such cases, it necessary study multisensor based intelligent mechanical fault diagnosis method. First, converted into grey images then fused a three-channel red-green-blue (RGB) image. Then, multiscale with residual convolution module proposed, which can extract deep features complex raw signal. Additionally, an attention for channel spatial introduced adaptively adjust feature response values each scale. Two datasets specific engineering application are used validate superiority network. The results show that network outperforms other networks terms identification accuracy, diagnostic efficiency, applicability.
Язык: Английский
Процитировано
4Nonlinear Dynamics, Год журнала: 2025, Номер unknown
Опубликована: Фев. 17, 2025
Процитировано
0Nonlinear Dynamics, Год журнала: 2025, Номер unknown
Опубликована: Апрель 11, 2025
Язык: Английский
Процитировано
0Lubricants, Год журнала: 2025, Номер 13(5), С. 221 - 221
Опубликована: Май 15, 2025
In order to improve the accuracy and generalization ability of fault diagnosis for rotating machinery bearings under complex working conditions, a new model based on multi-feature fusion improved weighted balance distribution adaptation is proposed. Firstly, an optimized variational mode decomposition algorithm introduced denoise signal. Secondly, in complement information from multiple dimensions, thirteen frequency features four entropy are extracted. Then, 17 directly concatenated by dimension form high-dimensional feature vector that better adapts conditions modes. Finally, adaptive used reduce difference between source domain target domain. K-nearest neighbors as classifier determine category. Using Case Western Reserve University dataset validation, experimental results show proposed achieves average diagnostic 99.34% 12 conditions.
Язык: Английский
Процитировано
0Measurement, Год журнала: 2024, Номер 242, С. 115920 - 115920
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
2Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
0