Suomen Maataloustieteellisen Seuran Tiedote,
Год журнала:
2024,
Номер
42
Опубликована: Апрель 5, 2024
Maatilat
ja
muut
aidot
tuotantoympäristöt
ovat
oleellisia
teknologisessa
kehittämisessä
tutkimuksessa,
jotta
tulokset
laajasti
hyödynnettävissä.
Eri
toimijat
ovatkin
jo
pitkään
toimineet
yhdessä
maatalousyrittäjien
kanssa
tki
–toiminnassa
täyttäen
Living
lab
–tunnuspiirteet.
määritellään
käyttäjälähtöiseksi
innovaatioekosysteemiksi,
joka
yhdistää
tutkimus-
innovaatioprosessit
tosielämän
yhteisöihin
ympäristöihin.
Tutkimustoiminnat
maatiloilla
kuitenkin
olleet
erillisiä
ne
saattaneet
myös
jäädä
kertaluonteisiksi.
Maatiloilla
tehtävää
tutkimustoimintaa
kehittämällä
voidaan
tiivistää
käytännön
maatalousyrittäjien,
tutkimuksen
neuvonnan
yhteistyötä
kaikkia
osapuolia
hyödyttävällä
tavalla
osaamista
vahvistaen.
Maatalousyrittäjät
yhä
koulutetumpia
heillä
on
halua
olla
mukana
pitkäjänteisessä
tki–toiminnassa,
auttaa
rakentamaan
tulevaisuuden
kilpailukykyä.
tunnuspiirteet
täyttäviä
maatilaympäristöjä
tunnistaa
ainakin
kolme
ryhmää.
Opetusmaatilat
alueellisesti
tärkeitä
uusien
teknologioiden
jalkauttamisessa
täydennyskoulutuksen
toteuttajina.
Osa
opetusmaatiloista
erilaisissa
tki–hankkeissa
esimerkiksi
Luken,
yliopistojen
ja/tai
ammattikorkeakoulujen
kanssa.
Tutkimusmaatiloja
eri
toimijoiden
hallinnassa.
Tutkimuslaitosten
lisäksi
kaupallisilla
toimijoilla
koetoimintaa
erityisesti
kasvinviljelyn
parissa.
Kolmantena
ympäristönä
toimivat
yksityisten
yrittäjien
omistamat
maatilat,
jotka
osallistuneet
tutkimustoimintaan
omien
kontaktiensa
kautta.
Erityisesti
EU:n
Horisontti-ohjelmassa
haettu
mukaan
alkutuotannon
yrityksiä
osana
multi–actor–approach–mallia,
jossa
maa–
puutarhatalouden
ongelmia
pyritään
ratkomaan
tutkijoiden
yhteistyönä.
Tutkimuksen
tavoitteena
luoda
jatkuvuutta
yhtenäisyyttä
suomalaiseen
maatalouden
lab–yhteistyömalliin
edistää
siten
datan
laajaa
hyödyntämistä
datatalouteen
siirtymistä
sekä
että
maatiloja
palvelevissa
asiantuntijaorganisaatioissa.
Tutkimuksessa
tunnistetaan
suomalaisen
maatilojen
–verkoston
kehityskohdat
mahdollisuudet.
jalostuu
otetaan
käyttöön
-yhteistyömalli,
kerätään
kokemuksia
tiloilla
syntyvän
hyödyntämisestä
hyvät
yhteistyön
käytännöt,
joilla
maatilojen,
saadaan
vakiinnutettua.
Hanke
parantaa
valmiuksia
aktiivisia
toimijoita
teknologisen
kumppaneina
eturivissä
omaksumassa
tuottamaa
hyötyä
osaksi
omaa
yritystoimintaansa.
Open Access Research Journal of Multidisciplinary Studies,
Год журнала:
2024,
Номер
7(2), С. 016 - 030
Опубликована: Апрель 7, 2024
This
study
investigates
the
transformative
impact
of
adaptive
Artificial
Intelligence
(AI)
on
precision
agriculture,
focusing
optimizing
farm
operations
through
real-time
data
analysis.
The
primary
objective
was
to
assess
how
AI
technologies
enhance
efficiency,
productivity,
and
sustainability
agricultural
practices.
Employing
a
systematic
literature
review
content
analysis,
methodology
involved
scrutinizing
peer-reviewed
articles
grey
from
key
databases,
applying
stringent
inclusion
exclusion
criteria
ensure
relevance
quality.
Key
findings
reveal
that
significantly
improves
by
enabling
precise
monitoring
management
crops,
soil,
environmental
conditions.
integration
IoT
devices
machine
learning
algorithms
facilitates
leading
optimized
resource
use,
reduced
impact,
increased
crop
yields.
Economic
benefits
include
cost
savings
efficient
management,
while
advantages
encompass
minimized
chemical
use
enhanced
sustainability.
Challenges
identified
high
implementation
costs,
technical
complexity,
privacy
concerns.
However,
solutions
such
as
policy
support,
technological
advancements,
stakeholder
collaboration
are
proposed
overcome
these
barriers.
Lastly,
holds
potential
revolutionize
agriculture
making
it
more
efficient,
sustainable,
productive.
Future
research
should
focus
developing
accessible,
robust
fostering
an
environment
conducive
adoption.
underscores
need
for
continued
innovation
support
fully
realize
in
agriculture.
Smart Agricultural Technology,
Год журнала:
2024,
Номер
8, С. 100477 - 100477
Опубликована: Май 25, 2024
Smart
farming
practices
offer
decision-making
support
as
farmers
navigate
economic,
social,
and
environmental
challenges.
However,
smart
adoption
remains
low
in
many
contexts
due
to
the
perceived
cost
skills
required,
hesitancies
about
sharing
agricultural
data.
Numerous
studies
have
reviewed
factors
that
influence
within
different
scenarios,
but
best
our
knowledge,
none
specifically
motivators
obstacles
of
agri-data
farming.
The
objective
this
research
was
identify
classify
most
prominent
drivers
barriers
for
across
stakeholders,
by
examining
existing
literature.
A
Systematic
Literature
Review
conducted
using
PRISMA
2020
methodology.
query
initially
identified
491
papers
from
Scopus
Web
Science,
after
screening
final
number
assessment
59.
Factors
affecting
willingness
capability
engage
data
were
categorised
socio-economic,
systemic,
technical,
legal
categories.
systemic
which
discussed
58%
57%
papers,
respectively.
Technical
prevalent
barriers,
68%
Perceived
knowledge
gain
leading
improved
decision-making,
collaboration
agri-value
chain,
technologies,
clarity
around
sovereignty
key
enablers
Lack
purpose
benefit
data,
mistrust
"who
will
my
data",
privacy
security,
lack
on
ownership
rights
use
concerns.
findings
paper
help
inform
on-the-ground
social
science
EU
focused
feasible
options
promoting
benefits
sharing.
Sustainability,
Год журнала:
2024,
Номер
16(17), С. 7331 - 7331
Опубликована: Авг. 26, 2024
Collaboration
across
the
agriculture
supply
chain
is
essential
to
address
high-yield
demand
and
sustainable
practices
amid
global
overpopulation.
Limited
resources,
such
as
soil
water,
are
compromised
by
excessive
chemical
agents
nutrient
use.
The
Internet
of
Things
(IoT)
smart
farming
offer
solutions
optimizing
agent
applications,
data
analysis,
farm
monitoring.
Evidence
from
numerous
studies
indicates
that
collaboration
in
chain,
including
farmers,
can
improve
efficiency
productivity,
reduce
costs,
enhance
crop
quality.
This
paper
investigates
transformation
traditional
into
through
integration
IoT
technology
community
partnerships.
It
presents
a
case
study
focused
on
educating
owners
about
advanced
technologies
decision-making,
yields,
promote
sustainability.
Additionally,
highlights
role
analytics
agriculture.
Farmers
southern
region
Zagreb,
Croatia,
were
trained
use
sensors
yield
Small
farms
face
challenges
improving
yields
due
limited
capacity
lack
entrepreneurial
experience.
DMAIC
methodology
was
employed
these
issues
measure
relevant
parameters.
also
discusses
consistent
patterns
between
electrical
conductivity
(EC)
measurements
potassium
levels
soil.
explains
potential
estimating
concentrations
based
EC
readings,
or
vice
versa.
Leveraging
proxy
for
could
cost-effective
means
assessing
fertility
dynamics.
Principal
Component
Analysis
(PCA)
biplot
analysis
presented,
showing
pH
values
behaved
independently.
Understanding
dynamics
enhances
knowledge
variability
informs
management
practices.
Deleted Journal,
Год журнала:
2024,
Номер
1(1), С. 013001 - 013001
Опубликована: Март 27, 2024
Abstract
Livestock
agriculture
must
change
to
meet
demand
for
food
production
while
building
soil,
reducing
flooding,
retaining
nutrients,
enhancing
biodiversity,
and
supporting
thriving
communities.
Technological
innovations,
including
those
in
digital
precision
agriculture,
are
unlikely
by
themselves
create
the
magnitude
directionality
of
transformation
livestock
systems
that
needed.
We
begin
comparing
technological,
ecological
social
innovations
feedlot-finished
pasture-finished
cattle
propose
what
is
required
a
more
integrative
‘agroecological
innovation’
process
intentionally
weaves
these
three
forms
innovation
transition
be
genuinely
regenerative
multifunctional.
This
integrated
system
emphasizes
as
essential
components
because
their
capacity
address
influence
context
into
which
technological
occur.
In
particular,
regional
place-making
can
especially
useful
an
interactive
designing
identities
people
engage
with
one
another
environments
define
landscape
futures
related
standards
normalize
particular
land
management
practices.
Intentionally
developing
help
communities
relational
processes
desired
outcomes
agricultural
landscapes
develop
ways
collaborate
towards
achieving
them,
creation
novel
supply
chains
support
systems.
As
norms
evolve
through
they
individual
behaviors
practices
on
ground
offer
pathway
rapid
scaling
agriculture.
Regional
also
‘meta’
engaging
public
private
institutions
responsible
natural
resources,
systems,
good,
further
accelerating
process.
Emerging
agroecological
designed
governed
ensure
diverse
compatible
contexts,
approaches
technologies
consistent
values
goals
region.
Agriculture,
Год журнала:
2024,
Номер
14(8), С. 1372 - 1372
Опубликована: Авг. 15, 2024
As
the
global
population
grows,
achieving
Zero
Hunger
by
2030
presents
a
significant
challenge.
Vertical
farming
technology
offers
potential
solution,
making
path
planning
of
agricultural
robots
in
vertical
farms
research
priority.
This
study
introduces
Farming
System
Multi-Robot
Trajectory
Planning
(VFSMRTP)
model.
To
optimize
this
model,
we
propose
Elitist
Preservation
Differential
Evolution
Grey
Wolf
Optimizer
(EPDE-GWO),
an
enhanced
version
(GWO)
incorporating
elite
preservation
and
differential
evolution.
The
EPDE-GWO
algorithm
is
compared
with
Genetic
Algorithm
(GA),
Simulated
Annealing
(SA),
Dung
Beetle
(DBO),
Particle
Swarm
Optimization
(PSO).
experimental
results
demonstrate
that
reduces
length
24.6%,
prevents
premature
convergence,
exhibits
strong
search
capabilities.
Thanks
to
DE
EP
strategies,
requires
fewer
iterations
reach
optimal
stability
robustness,
consistently
finds
solution
at
high
frequency.
These
attributes
are
particularly
context
farming,
where
optimizing
robotic
essential
for
maximizing
operational
efficiency,
reducing
energy
consumption,
improving
scalability
operations.
Applied Sciences,
Год журнала:
2024,
Номер
14(18), С. 8520 - 8520
Опубликована: Сен. 21, 2024
This
study
examines
the
impact
of
sensor
placement
and
multimodal
fusion
on
performance
a
Long
Short-Term
Memory
(LSTM)-based
model
for
human
activity
classification
taking
place
in
an
agricultural
harvesting
scenario
involving
human-robot
collaboration.
Data
were
collected
from
twenty
participants
performing
six
distinct
activities
using
five
wearable
inertial
measurement
units
placed
at
various
anatomical
locations.
The
signals
sensors
first
processed
to
eliminate
noise
then
input
into
LSTM
neural
network
recognizing
features
sequential
time-dependent
data.
Results
indicated
that
chest-mounted
provided
highest
F1-score
0.939,
representing
superior
over
other
placements
combinations
them.
Moreover,
magnetometer
surpassed
accelerometer
gyroscope,
highlighting
its
ability
capture
crucial
orientation
motion
data
related
investigated
activities.
However,
accelerometer,
showed
benefit
integrating
different
types
improve
accuracy.
emphasizes
effectiveness
strategic
optimizing
recognition,
thus
minimizing
requirements
computational
expenses,
resulting
cost-optimal
system
configuration.
Overall,
this
research
contributes
development
more
intelligent,
safe,
cost-effective
adaptive
synergistic
systems
can
be
integrated
variety
applications.
Agriculture,
Год журнала:
2025,
Номер
15(4), С. 367 - 367
Опубликована: Фев. 9, 2025
This
article
provides
a
comprehensive
overview
of
the
development
and
application
statistical
methods,
process-based
models,
machine
learning,
deep
learning
techniques
in
potato
yield
forecasting.
It
emphasizes
importance
integrating
diverse
data
sources,
including
meteorological,
phenotypic,
remote
sensing
data.
Advances
computer
technology
have
enabled
creation
more
sophisticated
such
as
mixed,
geostatistical,
Bayesian
models.
Special
attention
is
given
to
techniques,
particularly
convolutional
neural
networks,
which
significantly
enhance
forecast
accuracy
by
analyzing
complex
patterns.
The
also
discusses
effectiveness
other
algorithms,
Random
Forest
Support
Vector
Machines,
capturing
nonlinear
relationships
affecting
yields.
According
standards
adopted
agricultural
research,
Mean
Absolute
Percentage
Error
(MAPE)
implementation
prediction
issues
should
generally
not
exceed
15%.
Contemporary
research
indicates
that,
through
use
advanced
accurate
value
this
error
can
reach
levels
even
less
than
10
per
cent,
increasing
efficiency
Key
challenges
field
include
climatic
variability
difficulties
obtaining
on
soil
properties
agronomic
practices.
Despite
these
challenges,
technological
advancements
present
new
opportunities
for
Future
focus
leveraging
Internet
Things
(IoT)
real-time
collection
impact
biological
variables
yield.
An
interdisciplinary
approach,
insights
from
ecology
meteorology,
recommended
develop
innovative
predictive
exploration
methods
has
potential
advance
knowledge
forecasting
support
sustainable