Jatkuvuutta ja yhtenäisyyttä suomalaiseen maatalouden Living lab-yhteistyömalliin DOI Open Access

Hanna Karikallio,

Susanna Lahnamäki-Kivelä

Suomen Maataloustieteellisen Seuran Tiedote, Год журнала: 2024, Номер 42

Опубликована: Апрель 5, 2024

Maatilat ja muut aidot tuotantoympäristöt ovat oleellisia teknologisessa kehittämisessä tutkimuksessa, jotta tulokset laajasti hyödynnettävissä. Eri toimijat ovatkin jo pitkään toimineet yhdessä maatalousyrittäjien kanssa tki –toiminnassa täyttäen Living lab –tunnuspiirteet. määritellään käyttäjälähtöiseksi innovaatioekosysteemiksi, joka yhdistää tutkimus- innovaatioprosessit tosielämän yhteisöihin ympäristöihin. Tutkimustoiminnat maatiloilla kuitenkin olleet erillisiä ne saattaneet myös jäädä kertaluonteisiksi. Maatiloilla tehtävää tutkimustoimintaa kehittämällä voidaan tiivistää käytännön maatalousyrittäjien, tutkimuksen neuvonnan yhteistyötä kaikkia osapuolia hyödyttävällä tavalla osaamista vahvistaen. Maatalousyrittäjät yhä koulutetumpia heillä on halua olla mukana pitkäjänteisessä tki–toiminnassa, auttaa rakentamaan tulevaisuuden kilpailukykyä. tunnuspiirteet täyttäviä maatilaympäristöjä tunnistaa ainakin kolme ryhmää. Opetusmaatilat alueellisesti tärkeitä uusien teknologioiden jalkauttamisessa täydennyskoulutuksen toteuttajina. Osa opetusmaatiloista erilaisissa tki–hankkeissa esimerkiksi Luken, yliopistojen ja/tai ammattikorkeakoulujen kanssa. Tutkimusmaatiloja eri toimijoiden hallinnassa. Tutkimuslaitosten lisäksi kaupallisilla toimijoilla koetoimintaa erityisesti kasvinviljelyn parissa. Kolmantena ympäristönä toimivat yksityisten yrittäjien omistamat maatilat, jotka osallistuneet tutkimustoimintaan omien kontaktiensa kautta. Erityisesti EU:n Horisontti-ohjelmassa haettu mukaan alkutuotannon yrityksiä osana multi–actor–approach–mallia, jossa maa– puutarhatalouden ongelmia pyritään ratkomaan tutkijoiden yhteistyönä. Tutkimuksen tavoitteena luoda jatkuvuutta yhtenäisyyttä suomalaiseen maatalouden lab–yhteistyömalliin edistää siten datan laajaa hyödyntämistä datatalouteen siirtymistä sekä että maatiloja palvelevissa asiantuntijaorganisaatioissa. Tutkimuksessa tunnistetaan suomalaisen maatilojen –verkoston kehityskohdat mahdollisuudet. jalostuu otetaan käyttöön -yhteistyömalli, kerätään kokemuksia tiloilla syntyvän hyödyntämisestä hyvät yhteistyön käytännöt, joilla maatilojen, saadaan vakiinnutettua. Hanke parantaa valmiuksia aktiivisia toimijoita teknologisen kumppaneina eturivissä omaksumassa tuottamaa hyötyä osaksi omaa yritystoimintaansa.

Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data DOI Creative Commons

Olabimpe Banke Akintuyi

Open Access Research Journal of Multidisciplinary Studies, Год журнала: 2024, Номер 7(2), С. 016 - 030

Опубликована: Апрель 7, 2024

This study investigates the transformative impact of adaptive Artificial Intelligence (AI) on precision agriculture, focusing optimizing farm operations through real-time data analysis. The primary objective was to assess how AI technologies enhance efficiency, productivity, and sustainability agricultural practices. Employing a systematic literature review content analysis, methodology involved scrutinizing peer-reviewed articles grey from key databases, applying stringent inclusion exclusion criteria ensure relevance quality. Key findings reveal that significantly improves by enabling precise monitoring management crops, soil, environmental conditions. integration IoT devices machine learning algorithms facilitates leading optimized resource use, reduced impact, increased crop yields. Economic benefits include cost savings efficient management, while advantages encompass minimized chemical use enhanced sustainability. Challenges identified high implementation costs, technical complexity, privacy concerns. However, solutions such as policy support, technological advancements, stakeholder collaboration are proposed overcome these barriers. Lastly, holds potential revolutionize agriculture making it more efficient, sustainable, productive. Future research should focus developing accessible, robust fostering an environment conducive adoption. underscores need for continued innovation support fully realize in agriculture.

Язык: Английский

Процитировано

29

Building trust: A systematic review of the drivers and barriers of agricultural data sharing DOI Creative Commons
Clare S. Sullivan, Marilena Gemtou, Evangelos Anastasiou

и другие.

Smart Agricultural Technology, Год журнала: 2024, Номер 8, С. 100477 - 100477

Опубликована: Май 25, 2024

Smart farming practices offer decision-making support as farmers navigate economic, social, and environmental challenges. However, smart adoption remains low in many contexts due to the perceived cost skills required, hesitancies about sharing agricultural data. Numerous studies have reviewed factors that influence within different scenarios, but best our knowledge, none specifically motivators obstacles of agri-data farming. The objective this research was identify classify most prominent drivers barriers for across stakeholders, by examining existing literature. A Systematic Literature Review conducted using PRISMA 2020 methodology. query initially identified 491 papers from Scopus Web Science, after screening final number assessment 59. Factors affecting willingness capability engage data were categorised socio-economic, systemic, technical, legal categories. systemic which discussed 58% 57% papers, respectively. Technical prevalent barriers, 68% Perceived knowledge gain leading improved decision-making, collaboration agri-value chain, technologies, clarity around sovereignty key enablers Lack purpose benefit data, mistrust "who will my data", privacy security, lack on ownership rights use concerns. findings paper help inform on-the-ground social science EU focused feasible options promoting benefits sharing.

Язык: Английский

Процитировано

9

Data Analytics in Agriculture: Enhancing Decision-Making for Crop Yield Optimization and Sustainable Practices DOI Open Access
Dua Weraikat, Kristina Šorić, Martin Žagar

и другие.

Sustainability, Год журнала: 2024, Номер 16(17), С. 7331 - 7331

Опубликована: Авг. 26, 2024

Collaboration across the agriculture supply chain is essential to address high-yield demand and sustainable practices amid global overpopulation. Limited resources, such as soil water, are compromised by excessive chemical agents nutrient use. The Internet of Things (IoT) smart farming offer solutions optimizing agent applications, data analysis, farm monitoring. Evidence from numerous studies indicates that collaboration in chain, including farmers, can improve efficiency productivity, reduce costs, enhance crop quality. This paper investigates transformation traditional into through integration IoT technology community partnerships. It presents a case study focused on educating owners about advanced technologies decision-making, yields, promote sustainability. Additionally, highlights role analytics agriculture. Farmers southern region Zagreb, Croatia, were trained use sensors yield Small farms face challenges improving yields due limited capacity lack entrepreneurial experience. DMAIC methodology was employed these issues measure relevant parameters. also discusses consistent patterns between electrical conductivity (EC) measurements potassium levels soil. explains potential estimating concentrations based EC readings, or vice versa. Leveraging proxy for could cost-effective means assessing fertility dynamics. Principal Component Analysis (PCA) biplot analysis presented, showing pH values behaved independently. Understanding dynamics enhances knowledge variability informs management practices.

Язык: Английский

Процитировано

7

AI for Data-Driven Decision-Making in Smart Agriculture: From Field to Farm Management DOI
Harshit Mishra,

Divyanshi Mishra

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

5

Investigating the barriers to drone implementation in sustainable agriculture: A hybrid fuzzy-DEMATEL-MMDE-ISM-based approach DOI

Satender Pal Singh,

Anuj Sharma, Arnab Adhikari

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 371, С. 123299 - 123299

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

5

Agroecological innovation to scale livestock agriculture for positive economic, environmental, and social outcomes DOI Creative Commons
Claudio Gratton, John Strauser, Nicholas R. Jordan

и другие.

Deleted Journal, Год журнала: 2024, Номер 1(1), С. 013001 - 013001

Опубликована: Март 27, 2024

Abstract Livestock agriculture must change to meet demand for food production while building soil, reducing flooding, retaining nutrients, enhancing biodiversity, and supporting thriving communities. Technological innovations, including those in digital precision agriculture, are unlikely by themselves create the magnitude directionality of transformation livestock systems that needed. We begin comparing technological, ecological social innovations feedlot-finished pasture-finished cattle propose what is required a more integrative ‘agroecological innovation’ process intentionally weaves these three forms innovation transition be genuinely regenerative multifunctional. This integrated system emphasizes as essential components because their capacity address influence context into which technological occur. In particular, regional place-making can especially useful an interactive designing identities people engage with one another environments define landscape futures related standards normalize particular land management practices. Intentionally developing help communities relational processes desired outcomes agricultural landscapes develop ways collaborate towards achieving them, creation novel supply chains support systems. As norms evolve through they individual behaviors practices on ground offer pathway rapid scaling agriculture. Regional also ‘meta’ engaging public private institutions responsible natural resources, systems, good, further accelerating process. Emerging agroecological designed governed ensure diverse compatible contexts, approaches technologies consistent values goals region.

Язык: Английский

Процитировано

3

Development of an Improved GWO Algorithm for Solving Optimal Paths in Complex Vertical Farms with Multi-Robot Multi-Tasking DOI Creative Commons
Jiazheng Shen,

Tang Sai Hong,

Luxin Fan

и другие.

Agriculture, Год журнала: 2024, Номер 14(8), С. 1372 - 1372

Опубликована: Авг. 15, 2024

As the global population grows, achieving Zero Hunger by 2030 presents a significant challenge. Vertical farming technology offers potential solution, making path planning of agricultural robots in vertical farms research priority. This study introduces Farming System Multi-Robot Trajectory Planning (VFSMRTP) model. To optimize this model, we propose Elitist Preservation Differential Evolution Grey Wolf Optimizer (EPDE-GWO), an enhanced version (GWO) incorporating elite preservation and differential evolution. The EPDE-GWO algorithm is compared with Genetic Algorithm (GA), Simulated Annealing (SA), Dung Beetle (DBO), Particle Swarm Optimization (PSO). experimental results demonstrate that reduces length 24.6%, prevents premature convergence, exhibits strong search capabilities. Thanks to DE EP strategies, requires fewer iterations reach optimal stability robustness, consistently finds solution at high frequency. These attributes are particularly context farming, where optimizing robotic essential for maximizing operational efficiency, reducing energy consumption, improving scalability operations.

Язык: Английский

Процитировано

3

Optimal Sensor Placement and Multimodal Fusion for Human Activity Recognition in Agricultural Tasks DOI Creative Commons
Lefteris Benos, Dimitrios Tsaopoulos, Aristotelis C. Tagarakis

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(18), С. 8520 - 8520

Опубликована: Сен. 21, 2024

This study examines the impact of sensor placement and multimodal fusion on performance a Long Short-Term Memory (LSTM)-based model for human activity classification taking place in an agricultural harvesting scenario involving human-robot collaboration. Data were collected from twenty participants performing six distinct activities using five wearable inertial measurement units placed at various anatomical locations. The signals sensors first processed to eliminate noise then input into LSTM neural network recognizing features sequential time-dependent data. Results indicated that chest-mounted provided highest F1-score 0.939, representing superior over other placements combinations them. Moreover, magnetometer surpassed accelerometer gyroscope, highlighting its ability capture crucial orientation motion data related investigated activities. However, accelerometer, showed benefit integrating different types improve accuracy. emphasizes effectiveness strategic optimizing recognition, thus minimizing requirements computational expenses, resulting cost-optimal system configuration. Overall, this research contributes development more intelligent, safe, cost-effective adaptive synergistic systems can be integrated variety applications.

Язык: Английский

Процитировано

3

Lab to farm: mapping knowledge transfer channels and determinants from researchers’ perspective – A systematic literature review DOI Creative Commons

Sarra Ben Farah,

Nabil Amara

Journal of Innovation & Knowledge, Год журнала: 2025, Номер 10(1), С. 100650 - 100650

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Review of Methods and Models for Potato Yield Prediction DOI Creative Commons
Magdalena Piekutowska, Gniewko Niedbała

Agriculture, Год журнала: 2025, Номер 15(4), С. 367 - 367

Опубликована: Фев. 9, 2025

This article provides a comprehensive overview of the development and application statistical methods, process-based models, machine learning, deep learning techniques in potato yield forecasting. It emphasizes importance integrating diverse data sources, including meteorological, phenotypic, remote sensing data. Advances computer technology have enabled creation more sophisticated such as mixed, geostatistical, Bayesian models. Special attention is given to techniques, particularly convolutional neural networks, which significantly enhance forecast accuracy by analyzing complex patterns. The also discusses effectiveness other algorithms, Random Forest Support Vector Machines, capturing nonlinear relationships affecting yields. According standards adopted agricultural research, Mean Absolute Percentage Error (MAPE) implementation prediction issues should generally not exceed 15%. Contemporary research indicates that, through use advanced accurate value this error can reach levels even less than 10 per cent, increasing efficiency Key challenges field include climatic variability difficulties obtaining on soil properties agronomic practices. Despite these challenges, technological advancements present new opportunities for Future focus leveraging Internet Things (IoT) real-time collection impact biological variables yield. An interdisciplinary approach, insights from ecology meteorology, recommended develop innovative predictive exploration methods has potential advance knowledge forecasting support sustainable

Язык: Английский

Процитировано

0