A multi-strategy improved rime optimization algorithm for three-dimensional USV path planning and global optimization DOI Creative Commons
G. Gu, J. L. Lou,

Haibo Wan

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Март 20, 2024

Abstract The RIME optimization algorithm (RIME) represents an advanced technique. However, it suffers from issues such as slow convergence speed and susceptibility to falling into local optima. In response these shortcomings, we propose a multi-strategy enhanced version known the improved (MIRIME). Firstly, Tent chaotic map is utilized initialize population, laying groundwork for global optimization. Secondly, introduce adaptive update strategy based on leadership dynamic centroid, facilitating swarm's exploitation in more favorable direction. To address problem of population scarcity later iterations, lens imaging opposition-based learning control introduced enhance diversity ensure accuracy. proposed centroid boundary not only limits search boundaries individuals but also effectively enhances algorithm's focus efficiency. Finally, demonstrate performance MIRIME, employ 30 CEC2017 test functions compare with 11 popular algorithms across different dimensions, verifying its effectiveness. Additionally, assess method's practical feasibility, apply MIRIME solve three-dimensional path planning unmanned surface vehicles. Experimental results indicate that outperforms other competing terms solution quality stability, highlighting superior application potential.

Язык: Английский

Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm DOI
Mojtaba Ghasemi, Mohsen Zare, Pavel Trojovský

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 295, С. 111850 - 111850

Опубликована: Апрель 22, 2024

Язык: Английский

Процитировано

30

DEMFFA: a multi-strategy modified Fennec Fox algorithm with mixed improved differential evolutionary variation strategies DOI Creative Commons
Gang Hu,

Keke Song,

Xiuxiu Li

и другие.

Journal Of Big Data, Год журнала: 2024, Номер 11(1)

Опубликована: Май 8, 2024

Abstract The Fennec Fox algorithm (FFA) is a new meta-heuristic that primarily inspired by the fox's ability to dig and escape from wild predators. Compared with other classical algorithms, FFA shows strong competitiveness. “No free lunch” theorem an has different effects in face of problems, such as: when solving high-dimensional or more complex applications, there are challenges as easily falling into local optimal slow convergence speed. To solve this problem FFA, paper, improved Fenna fox DEMFFA proposed adding sin chaotic mapping, formula factor adjustment, Cauchy operator mutation, differential evolution mutation strategies. Firstly, mapping strategy added initialization stage make population distribution uniform, thus speeding up Secondly, order expedite speed algorithm, adjustments made factors whose position updated first stage, resulting faster convergence. Finally, prevent getting too early expand search space population, after second stages original update. In verify performance DEMFFA, qualitative analysis carried out on test sets, tested newly algorithms three sets. And we also CEC2020. addition, applied 10 practical engineering design problems 24-bar truss topology optimization problem, results show potential problems.

Язык: Английский

Процитировано

6

Noise Elimination for Wide Field Electromagnetic Data via Improved Dung Beetle Optimized Gated Recurrent Unit DOI Creative Commons
Zhongyuan Liu, Xian Zhang, Diquan Li

и другие.

Geosciences, Год журнала: 2025, Номер 15(1), С. 8 - 8

Опубликована: Янв. 3, 2025

Noise profoundly affects the quality of electromagnetic data, and selecting appropriate hyperparameters for machine learning models poses a significant challenge. Consequently, current denoising techniques fall short in delivering precise processing Wide Field Electromagnetic Method (WFEM) data. To eliminate noise, this paper presents an data approach based on improved dung beetle optimized (IDBO) gated recurrent unit (GRU) its application. Firstly, Spatial Pyramid Matching (SPM) chaotic mapping, variable spiral strategy, Levy flight mechanism, adaptive T-distribution variation perturbation strategy were utilized to enhance DBO algorithm. Subsequently, mean square error is employed as fitness IDBO algorithm achieve hyperparameter optimization GRU Finally, IDBO-GRU method applied WFEM Experiments demonstrate that capacity conspicuously superior other intelligent algorithms, surpasses probabilistic neural network (PNN) accuracy Moreover, time domain processed more line with periodic signal characteristics, overall significantly enhanced, electric field curve stable. Therefore, adept at sequence, application results also validate proposed can offer technical support inversion interpretation.

Язык: Английский

Процитировано

0

An innovative complex-valued encoding black-winged kite algorithm for global optimization DOI Creative Commons

Chengtao Du,

Jinzhong Zhang, Jie Fang

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

0

A New Hybrid Improved Kepler Optimization Algorithm Based on Multi-Strategy Fusion and Its Applications DOI Creative Commons
Zhenghong Qian, Yaming Zhang, De-Yong Pu

и другие.

Mathematics, Год журнала: 2025, Номер 13(3), С. 405 - 405

Опубликована: Янв. 26, 2025

The Kepler optimization algorithm (KOA) is a metaheuristic based on Kepler’s laws of planetary motion and has demonstrated outstanding performance in multiple test sets for various issues. However, the KOA hampered by limitations insufficient convergence accuracy, weak global search ability, slow speed. To address these deficiencies, this paper presents multi-strategy fusion (MKOA). Firstly, initializes population using Good Point Set, enhancing diversity. Secondly, Dynamic Opposition-Based Learning applied individuals to further improve its exploration effectiveness. Furthermore, we introduce Normal Cloud Model perturb best solution, improving rate accuracy. Finally, new position-update strategy introduced balance local search, helping escape optima. MKOA, uses CEC2017 CEC2019 suites testing. data indicate that MKOA more advantages than other algorithms terms practicality Aiming at engineering issue, study selected three classic cases. results reveal demonstrates strong applicability practice.

Язык: Английский

Процитировано

0

Logistic-Gauss Circle Optimizer: Theory and Applications DOI
Jinpeng Wang, Yuansheng Gao,

Lang Qin

и другие.

Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 116052 - 116052

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

EHHO-EL: a hybrid method for software defect detection in software product lines using extended Harris hawks optimization and ensemble learning DOI

Mehdi Habibzadeh-khameneh,

Akbar Nabiollahi-Najafabadi,

Reza Tavoli

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

0

The improved mountain gazelle optimizer for spatiotemporal support vector regression: a novel method for railway subgrade settlement prediction integrating multi-source information DOI
Chen Guangwu, Shilin Zhao, Peng Li

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(6)

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

EPKO: Enhanced pied kingfisher optimizer for numerical optimization and engineering problems DOI

Benfeng Hu,

Xiaoliang Zheng, Wenhao Lai

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127416 - 127416

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Augmented Harris hawks optimization and for engineering design problems and UAV path planning DOI

Linnan Zhu,

Youfa Fu

International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0