
Advances in Water Resources, Год журнала: 2024, Номер 185, С. 104637 - 104637
Опубликована: Янв. 24, 2024
Язык: Английский
Advances in Water Resources, Год журнала: 2024, Номер 185, С. 104637 - 104637
Опубликована: Янв. 24, 2024
Язык: Английский
Industrial & Engineering Chemistry Research, Год журнала: 2022, Номер 61(24), С. 8530 - 8541
Опубликована: Март 25, 2022
The modeling of flow and transport in porous media is the utmost importance many chemical engineering applications, including catalytic reactors, batteries, CO2 storage. aim this study to test use fully connected (FCNN) convolutional neural networks (CNN) for prediction crucial properties systems: permeability filtration rate. data-driven models are trained on a dataset computational fluid dynamics (CFD) simulations. To end, geometries created silico by discrete element method, rigorous setup CFD simulations presented. have as input both geometrical operating conditions features so that they could find application multiscale modeling, optimization problems, in-line control. average error lower than 2.5%, rate 5% all models. These results achieved with at least ∼100
Язык: Английский
Процитировано
43International Journal of Heat and Mass Transfer, Год журнала: 2024, Номер 235, С. 126149 - 126149
Опубликована: Сен. 7, 2024
Язык: Английский
Процитировано
13Chemical Engineering Journal, Год журнала: 2022, Номер 453, С. 139540 - 139540
Опубликована: Окт. 3, 2022
Язык: Английский
Процитировано
31Computational Geosciences, Год журнала: 2023, Номер 27(2), С. 245 - 262
Опубликована: Янв. 31, 2023
Abstract In recent years, convolutional neural networks (CNNs) have experienced an increasing interest in their ability to perform a fast approximation of effective hydrodynamic parameters porous media research and applications. This paper presents novel methodology for permeability prediction from micro-CT scans geological rock samples. The training data set CNNs dedicated consists labels that are typically generated by classical lattice Boltzmann methods (LBM) simulate the flow through pore space segmented image data. We instead direct numerical simulation (DNS) solving stationary Stokes equation efficient distributed-parallel manner. As such, we circumvent convergence issues LBM frequently observed on complex geometries, therefore, improve generality accuracy our set. Using DNS-computed permeabilities, physics-informed CNN (PhyCNN) is trained additionally providing tailored characteristic quantity space. More precisely, exploiting connection problems graph representation space, additional information about confined structures provided network terms maximum value, which key innovative component workflow. robustness this approach reflected very high accuracy, variety sandstone samples archetypal formations.
Язык: Английский
Процитировано
20Advances in Water Resources, Год журнала: 2024, Номер 188, С. 104695 - 104695
Опубликована: Апрель 9, 2024
Digital rock physics is at the forefront of characterizing porous media, leveraging advanced tomographic imaging and numerical simulations to extract key properties like permeability. However, fully capturing heterogeneity natural rocks necessitates increasingly larger sample volumes, presenting a significant challenge. Direct these scales become either prohibitively expensive or computationally unfeasible due limitations in resolution field view (FOV). This issue particularly pronounced carbonate rocks, known for their complex, multiscale pore structures, which exacerbate resolution-FOV tradeoff. To address this, we introduce machine learning strategy that merges data from various resolutions with 3D convolutional neural network (CNN) model. approach innovative its ability identify cross-scale correlations, thereby enabling estimation transport volumes—properties are difficult simulate directly—using trainable proxies. The integration deep allows accurate permeability predictions beyond those feasible traditional direct simulation methods. By employing transfer across different during training phase, our model achieves robust performance, an R² exceeding 0.96 when evaluated on diverse lower-resolution domains FOVs. Notably, this method significantly enhances computational efficiency, reducing time by orders magnitude. Originally developed intricate structures shows promise application wide range offering viable solution longstanding tradeoff between FOV digital physics.
Язык: Английский
Процитировано
7International Journal of Heat and Mass Transfer, Год журнала: 2025, Номер 241, С. 126688 - 126688
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Physical Review Fluids, Год журнала: 2022, Номер 7(7)
Опубликована: Июль 12, 2022
Predicting the pore flow velocity directly from sub-sampled structure is an ill-conditioned problem. Inspired by multi-grid methods for solving systems of linear equations, we use fields simulated on coarse meshes to remedy such ill-conditioning. This leads a super-resolution-assisted geometry-to-velocity mapping porous media.
Язык: Английский
Процитировано
28Chemical Engineering and Processing - Process Intensification, Год журнала: 2022, Номер 181, С. 109148 - 109148
Опубликована: Сен. 21, 2022
Язык: Английский
Процитировано
28Fundamental Research, Год журнала: 2022, Номер 3(3), С. 409 - 421
Опубликована: Янв. 5, 2022
Gas transport mechanisms can be categorized into viscous flow and mass diffusion, both of which may coexist in a porous media with multiscale pore sizes. To determine the dominant mechanism its contribution to gas capacity, diffusion processes are analyzed single nanoscale pores via theoretical method, simulated 3D nanoporous pore-scale lattice Boltzmann methods. The apparent permeability from diffusivity estimated. A dimensionless parameter, i.e., diffusion-flow ratio, is proposed evaluate mechanism, function permeability, diffusivity, bulk dynamic viscosity, working pressure. results show that increases by approximately two orders magnitude when average Knudsen number (Knavg) or (Kn) 0.1 10. Under same conditions, increment only one order magnitude. When Kn < 0.01, has lower bound (i.e., absolute permeability). > 10, an upper diffusivity). for 0.01 100, where maximum ratio less than one. In media, relies heavily on Knavg structural parameters. For throat diameter 3 nm, = 0.2 critical point, above dominant; otherwise, dominant. As 3.4, overwhelming, reaching ∼4.
Язык: Английский
Процитировано
26Computers & Geosciences, Год журнала: 2022, Номер 165, С. 105151 - 105151
Опубликована: Май 22, 2022
Язык: Английский
Процитировано
24