Sub-core permeability inversion using positron emission tomography data—Ensemble Kalman Filter performance comparison and ensemble generation using an advanced convolutional neural network DOI Creative Commons
Zitong Huang, Christopher Zahasky

Advances in Water Resources, Год журнала: 2024, Номер 185, С. 104637 - 104637

Опубликована: Янв. 24, 2024

Язык: Английский

From Computational Fluid Dynamics to Structure Interpretation via Neural Networks: An Application to Flow and Transport in Porous Media DOI Creative Commons
Agnese Marcato, Gianluca Boccardo, Daniele Marchisio

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2022, Номер 61(24), С. 8530 - 8541

Опубликована: Март 25, 2022

The modeling of flow and transport in porous media is the utmost importance many chemical engineering applications, including catalytic reactors, batteries, CO2 storage. aim this study to test use fully connected (FCNN) convolutional neural networks (CNN) for prediction crucial properties systems: permeability filtration rate. data-driven models are trained on a dataset computational fluid dynamics (CFD) simulations. To end, geometries created silico by discrete element method, rigorous setup CFD simulations presented. have as input both geometrical operating conditions features so that they could find application multiscale modeling, optimization problems, in-line control. average error lower than 2.5%, rate 5% all models. These results achieved with at least ∼100

Язык: Английский

Процитировано

43

Data-driven methods for flow and transport in porous media: A review DOI Creative Commons
Guang Yang, Ran Xu, Yusong Tian

и другие.

International Journal of Heat and Mass Transfer, Год журнала: 2024, Номер 235, С. 126149 - 126149

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

13

Materials processing model-driven discovery framework for porous materials using machine learning and genetic algorithm: A focus on optimization of permeability and filtration efficiency DOI Creative Commons

Tomoki Yasuda,

Shinichi Ookawara, Shiro Yoshikawa

и другие.

Chemical Engineering Journal, Год журнала: 2022, Номер 453, С. 139540 - 139540

Опубликована: Окт. 3, 2022

Язык: Английский

Процитировано

31

Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS DOI Creative Commons
Stephan Gärttner, Faruk O. Alpak, Andreas Meier

и другие.

Computational Geosciences, Год журнала: 2023, Номер 27(2), С. 245 - 262

Опубликована: Янв. 31, 2023

Abstract In recent years, convolutional neural networks (CNNs) have experienced an increasing interest in their ability to perform a fast approximation of effective hydrodynamic parameters porous media research and applications. This paper presents novel methodology for permeability prediction from micro-CT scans geological rock samples. The training data set CNNs dedicated consists labels that are typically generated by classical lattice Boltzmann methods (LBM) simulate the flow through pore space segmented image data. We instead direct numerical simulation (DNS) solving stationary Stokes equation efficient distributed-parallel manner. As such, we circumvent convergence issues LBM frequently observed on complex geometries, therefore, improve generality accuracy our set. Using DNS-computed permeabilities, physics-informed CNN (PhyCNN) is trained additionally providing tailored characteristic quantity space. More precisely, exploiting connection problems graph representation space, additional information about confined structures provided network terms maximum value, which key innovative component workflow. robustness this approach reflected very high accuracy, variety sandstone samples archetypal formations.

Язык: Английский

Процитировано

20

A computationally efficient modeling of flow in complex porous media by coupling multiscale digital rock physics and deep learning: Improving the tradeoff between resolution and field-of-view DOI Creative Commons
Iman Nabipour, Amir Raoof, Veerle Cnudde

и другие.

Advances in Water Resources, Год журнала: 2024, Номер 188, С. 104695 - 104695

Опубликована: Апрель 9, 2024

Digital rock physics is at the forefront of characterizing porous media, leveraging advanced tomographic imaging and numerical simulations to extract key properties like permeability. However, fully capturing heterogeneity natural rocks necessitates increasingly larger sample volumes, presenting a significant challenge. Direct these scales become either prohibitively expensive or computationally unfeasible due limitations in resolution field view (FOV). This issue particularly pronounced carbonate rocks, known for their complex, multiscale pore structures, which exacerbate resolution-FOV tradeoff. To address this, we introduce machine learning strategy that merges data from various resolutions with 3D convolutional neural network (CNN) model. approach innovative its ability identify cross-scale correlations, thereby enabling estimation transport volumes—properties are difficult simulate directly—using trainable proxies. The integration deep allows accurate permeability predictions beyond those feasible traditional direct simulation methods. By employing transfer across different during training phase, our model achieves robust performance, an R² exceeding 0.96 when evaluated on diverse lower-resolution domains FOVs. Notably, this method significantly enhances computational efficiency, reducing time by orders magnitude. Originally developed intricate structures shows promise application wide range offering viable solution longstanding tradeoff between FOV digital physics.

Язык: Английский

Процитировано

7

A universal structure of neural network for predicting heat, flow and mass transport in various three-dimensional porous media DOI
Wang Hui, Mou Wang, Ying Yin

и другие.

International Journal of Heat and Mass Transfer, Год журнала: 2025, Номер 241, С. 126688 - 126688

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

1

Neural network–based pore flow field prediction in porous media using super resolution DOI Creative Commons
Xu‐Hui Zhou,

James McClure,

Cheng Chen

и другие.

Physical Review Fluids, Год журнала: 2022, Номер 7(7)

Опубликована: Июль 12, 2022

Predicting the pore flow velocity directly from sub-sampled structure is an ill-conditioned problem. Inspired by multi-grid methods for solving systems of linear equations, we use fields simulated on coarse meshes to remedy such ill-conditioning. This leads a super-resolution-assisted geometry-to-velocity mapping porous media.

Язык: Английский

Процитировано

28

Intensification of catalytic reactors: A synergic effort of Multiscale Modeling, Machine Learning and Additive Manufacturing DOI
Mauro Bracconi

Chemical Engineering and Processing - Process Intensification, Год журнала: 2022, Номер 181, С. 109148 - 109148

Опубликована: Сен. 21, 2022

Язык: Английский

Процитировано

28

Identifying the dominant transport mechanism in single nanoscale pores and 3D nanoporous media DOI Creative Commons
Ying Yin, Zhiguo Qu, Maša Prodanović

и другие.

Fundamental Research, Год журнала: 2022, Номер 3(3), С. 409 - 421

Опубликована: Янв. 5, 2022

Gas transport mechanisms can be categorized into viscous flow and mass diffusion, both of which may coexist in a porous media with multiscale pore sizes. To determine the dominant mechanism its contribution to gas capacity, diffusion processes are analyzed single nanoscale pores via theoretical method, simulated 3D nanoporous pore-scale lattice Boltzmann methods. The apparent permeability from diffusivity estimated. A dimensionless parameter, i.e., diffusion-flow ratio, is proposed evaluate mechanism, function permeability, diffusivity, bulk dynamic viscosity, working pressure. results show that increases by approximately two orders magnitude when average Knudsen number (Knavg) or (Kn) 0.1 10. Under same conditions, increment only one order magnitude. When Kn < 0.01, has lower bound (i.e., absolute permeability). > 10, an upper diffusivity). for 0.01 100, where maximum ratio less than one. In media, relies heavily on Knavg structural parameters. For throat diameter 3 nm, = 0.2 critical point, above dominant; otherwise, dominant. As 3.4, overwhelming, reaching ∼4.

Язык: Английский

Процитировано

26

A 3D reconstruction method of porous media based on improved WGAN-GP DOI
Ting Zhang, Qingyang Liu, Tonghua Wang

и другие.

Computers & Geosciences, Год журнала: 2022, Номер 165, С. 105151 - 105151

Опубликована: Май 22, 2022

Язык: Английский

Процитировано

24