Computer Vision and Image Understanding, Год журнала: 2024, Номер 250, С. 104232 - 104232
Опубликована: Ноя. 15, 2024
Язык: Английский
Computer Vision and Image Understanding, Год журнала: 2024, Номер 250, С. 104232 - 104232
Опубликована: Ноя. 15, 2024
Язык: Английский
Neurocomputing, Год журнала: 2025, Номер unknown, С. 129587 - 129587
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Sensors, Год журнала: 2024, Номер 24(14), С. 4639 - 4639
Опубликована: Июль 17, 2024
Multi-modal object re-identification (ReID) is a challenging task that seeks to identify objects across different image modalities by leveraging their complementary information. Traditional CNN-based methods are constrained limited receptive fields, whereas Transformer-based approaches hindered high computational demands and lack of convolutional biases. To overcome these limitations, we propose novel fusion framework named MambaReID, integrating the strengths both architectures with effective VMamba. Specifically, our MambaReID consists three components: Three-Stage VMamba (TSV), Dense Mamba (DM), Consistent Fusion (CVF). TSV efficiently captures global context information local details low complexity. DM enhances feature discriminability fully inter-modality shallow deep features through dense connections. Additionally, well-aligned multi-modal images, CVF provides more granular modal aggregation, thereby improving robustness. The framework, its innovative components, not only achieves superior performance in ReID tasks, but also does so fewer parameters lower costs. Our proposed MambaReID's effectiveness validated extensive experiments conducted on benchmarks.
Язык: Английский
Процитировано
3IEEE Transactions on Information Forensics and Security, Год журнала: 2025, Номер 20, С. 2593 - 2606
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112961 - 112961
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 12, 2025
Zebrafish are widely used in vertebrate studies, yet minimally invasive individual tracking and identification the lab setting remain challenging due to complex time-variable conditions. Advancements machine learning, particularly neural networks, offer new possibilities for developing simple robust protocols that adapt changing We demonstrate a rolling window training technique suitable use with open-source convolutional networks (CNN) vision transformers (ViT) shows promise robustly identifying maturing zebrafish groups over several weeks. The provides high-fidelity method monitoring temporally evolving classes, potentially significantly reducing need images both CNN ViT architectures. To understand success of classifier inform future real-time zebrafish, we analyzed impact shape, pattern, color by modifying set compared test results other prevalent learning models.
Язык: Английский
Процитировано
0Neural Networks, Год журнала: 2025, Номер unknown, С. 107394 - 107394
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 9, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2024, Номер 12(14), С. 2247 - 2247
Опубликована: Июль 19, 2024
Vehicle re-identification employs computer vision to determine the presence of specific vehicles in images or video sequences, often using vehicle appearance for identification due challenge capturing complete license plate information. Addressing performance issues caused by fog, such as image blur and loss key positional information, this paper introduces a multi-task learning framework incorporating multi-scale fusion defogging method (MsF). This effectively mitigates produce clearer images, which are then processed branch. Additionally, phase attention mechanism is introduced adaptively preserve crucial details. Utilizing advanced artificial intelligence techniques deep algorithms, evaluated on both synthetic real datasets, showing significant improvements mean average precision (mAP)—an increase 2.5% 87.8% dataset 1.4% 84.1% dataset. These enhancements demonstrate method’s superior over semi-supervised joint (SJDL) model, particularly under challenging foggy conditions, thus enhancing accuracy deepening understanding applying frameworks adverse visual environments.
Язык: Английский
Процитировано
1Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 144 - 160
Опубликована: Окт. 31, 2024
Язык: Английский
Процитировано
1Computer Vision and Image Understanding, Год журнала: 2024, Номер 250, С. 104232 - 104232
Опубликована: Ноя. 15, 2024
Язык: Английский
Процитировано
0