Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Дек. 18, 2024
Язык: Английский
Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Дек. 18, 2024
Язык: Английский
Water Resources Management, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Water Resources Management, Год журнала: 2025, Номер unknown
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
0Water Resources Management, Год журнала: 2025, Номер unknown
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0Hydrological Sciences Journal, Год журнала: 2025, Номер unknown
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Hydrological Processes, Год журнала: 2025, Номер 39(5)
Опубликована: Май 1, 2025
ABSTRACT Streamflow forecasting using interpretable machine learning methods (MLs) for exploring runoff processes has received a lot of attention. However, multi‐step ahead daily streamflow considering antecedent as an input various MLs is very limited. Thus, three in the Huaihe River basin China during 2002–2020, including eXtreme Gradient Boosting (XGBoost), long short‐term memory neural network (LSTM) and convolutional (CNN) with SHapley Additive exPlanations (SHAP) method, were implemented to study role potential controlling factors, streamflow, soil moisture vegetation growth, at lead times 0–6 days. The performances decreased times. Specifically, LSTM model performed best 0–3 days, followed by CNN XGBoost. was superior XGBoost models when time greater than 3 optimal 0.71–0.97, 311.45–674.27 m /s, 0.84–0.97 0.75–0.97 according Nash‐Sutclife efficiency, root‐mean‐square error, correlation coefficient Kling‐Gupta respectively. results varied across different consistently dominated processes, particularly models. significant depth 28–100 cm leaf area index low gradually emerged increased models, even outranking importance streamflow. Furthermore, interpretability demonstrated validated through infiltration uncertainty analysis. Overall, great enhance our understanding basin‐scale processes.
Язык: Английский
Процитировано
0Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Дек. 18, 2024
Язык: Английский
Процитировано
1