TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON), Год журнала: 2024, Номер unknown, С. 1724 - 1728
Опубликована: Дек. 1, 2024
Язык: Английский
TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON), Год журнала: 2024, Номер unknown, С. 1724 - 1728
Опубликована: Дек. 1, 2024
Язык: Английский
Diagnostics, Год журнала: 2025, Номер 15(3), С. 244 - 244
Опубликована: Янв. 22, 2025
Background/Objectives: The integration of digital imaging technologies in dentistry has revolutionized diagnostic and treatment practices, with panoramic radiographs playing a crucial role detecting impacted teeth. Manual interpretation these images is time consuming error prone, highlighting the need for automated, accurate solutions. This study proposes an artificial intelligence (AI)-based model teeth radiographs, aiming to enhance accuracy reliability. Methods: proposed combines YOLO (You Only Look Once) RT-DETR (Real-Time Detection Transformer) models leverage their strengths real-time object detection learning long-range dependencies, respectively. further optimized Weighted Boxes Fusion (WBF) algorithm, where WBF parameters are tuned using Bayesian optimization. A dataset 407 labeled was used evaluate model’s performance. Results: achieved mean average precision (mAP) 98.3% F1 score 96%, significantly outperforming individual other combinations. results were expressed through key performance metrics, such as mAP scores, which highlight balance between recall. Visual numerical analyses demonstrated superior performance, enhanced sensitivity minimized false positive rates. Conclusions: presents scalable reliable AI-based solution offering substantial improvements efficiency. potential widespread application clinical dentistry, reducing manual workload Future research will focus on expanding refining generalizability.
Язык: Английский
Процитировано
1Clinical Oral Implants Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 22, 2025
This study evaluated ResNet-50 and U-Net models for detecting segmenting vertical misfit in dental implant crowns using periapical radiographic images. Periapical radiographs of were classified by two experts based on the presence (reference group). The area was manually annotated images exhibiting misfit. resulting datasets utilized to train deep learning models. Then, 70% allocated training, while remaining 30% used validation testing. Five general dentists categorized testing as "misfit" or "fit." Inter-rater reliability with Cohen's kappa index performance metrics calculated. average artificial intelligence (AI) compared paired-samples t test. A total 638 collected. values between AI ranged from 0.93 0.98, indicating perfect agreement. model achieved accuracy precision 92.7% 87.5%, respectively, whereas had a mean 93.3% 89.6%. sensitivity specificity 90.3% 93.8%, 90.1% 95.1% dentists. Dice coefficient yielded 88.9% 89.5% among algorithm produced loss 0.01 an 0.98. No significant difference found (p > 0.05). can detect segment prosthetic radiographs, comparable clinician performance.
Язык: Английский
Процитировано
0Oral Surgery Oral Medicine Oral Pathology and Oral Radiology, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Artificial intelligence (AI) is transforming diagnostic imaging in dentistry. This systematic review evaluates existing literature on augmented dentomaxillofacial radiology, focusing its influence human collaboration interpreting dental imaging. A search across seven databases and gray was conducted. Studies evaluating clinician performance with AI-assistance were included, while reviews, surveys, case reports excluded. The QUADAS-2 tool assessed the risk of bias. Sixteen studies AI radiographic interpretation. AI-assisted caries detection consistently improved accuracy, sensitivity, specificity. Detection apical pathoses jaw lesion segmentation reducing time. Cephalometric landmark identification showed increased particularly for students. Soft tissue calcification but sensitivity decreased. Overall, enhanced interobserver agreement reduced variability, general dentists students showing greatest gains. Augmented enhances interpretation by improving tasks, less experienced clinicians, positively influences clinical decision-making. However, remains inconsistent challenging cases involving complex or varied conditions. While it complements rather than replaces further validation AI's generalizability reliability using larger, diverse datasets necessary.
Язык: Английский
Процитировано
0International Dental Journal, Год журнала: 2025, Номер 75(4), С. 100827 - 100827
Опубликована: Май 10, 2025
Язык: Английский
Процитировано
0IEEE Access, Год журнала: 2024, Номер 12, С. 150147 - 150168
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
2Bioengineering, Год журнала: 2024, Номер 11(10), С. 1001 - 1001
Опубликована: Окт. 5, 2024
Periapical radiographs are routinely used in dental practice for diagnosis and treatment planning purposes. However, they often suffer from artifacts, distortions, superimpositions, which can lead to potential misinterpretations. Thus, an automated detection system is required overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields, including medicine dentistry, by facilitating the development of intelligent systems that aid performing complex tasks such as planning. The purpose present study was verify diagnostic performance AI automatic teeth, caries, implants, restorations, fixed prosthesis on periapical radiographs. A dataset comprising 1000 collected 500 adult patients analyzed compared with annotations provided two oral maxillofacial radiologists. strong correlation (R > 0.5) observed between perception observers 1 2 carious teeth (0.7-0.73), implants (0.97-0.98), restored (0.85-0.89), (0.92-0.94), missing (0.82-0.85). comparable radiologists may be useful identification
Язык: Английский
Процитировано
0Опубликована: Авг. 1, 2024
Os exames de Tomografia Computadorizada Feixe Cônico (TCFC) são essenciais na área Odontologia, tanto para o diagnóstico preciso quanto planejamento tratamentos dentários complexos.Um dos achados possíveis nas imagens TCFC as suspeitas cáries, que constituem um desafio por ser difícil a sua diferenciação artefatos, principalmente causados pela atenuação materiais densos ou metálicos.Outra dificuldade se encontra identificação cáries em estágios iniciais, cujo tamanho dificulta visualização TCFC.A e classificação meio desses possibilita intervenções precoces eficazes lesões cariosas.No entanto, abordagem tradicional dessas depende fortemente avaliações visuais interpretações especialistas, processo exige tempo esforço.As metodologias segmentação técnicas Aprendizado Máquina têm sido cada vez mais adotadas Odontologia aprimorar outras doenças.A partir uma revisão sistemática métodos computacionais foi constatada notável ausência diferenciem os das importante definir tratamento da mesma.Considerando avanços tecnológicos recentes tendências limitações identificadas literatura atual, objetivo deste projeto é desenvolver método dentárias TCFC, integrando processamento com Máquina.Adicionalmente, incorpora uso Profundo conjunto tarefas Self-supervised Learning, empregando escala do International Caries Detection and Assessment System diferentes níveis cáries.Na etapa segmentação, atingido segmentar automaticamente região lesionada, precisão 88,50%, sensibilidade 87,33% índice Jaccard 0,7037.Na classificação, foram utilizadas duas abordagens: Clássico Learning (SSL).Na Clássico, modelos apresentaram acurácia F1-Score macro acima 86%.Utilizando SSL, superior 88%, representando melhoria significativa relação aos anteriores.Esses resultados mostram eficácia proposta ao apresentar análise abordagens e, consequentemente, afetada
Процитировано
0Computers in Biology and Medicine, Год журнала: 2024, Номер 183, С. 109221 - 109221
Опубликована: Окт. 7, 2024
Язык: Английский
Процитировано
0PLoS ONE, Год журнала: 2024, Номер 19(12), С. e0310925 - e0310925
Опубликована: Дек. 31, 2024
This study aimed to evaluate the performance of a deep learning-based segmentation model for predicting outcomes non-surgical endodontic treatment. Preoperative and 3-year postoperative periapical radiographic images each tooth from routine root canal treatments performed by endodontists 2015 2021 were obtained retrospectively Thammasat University hospital. 1200 teeth with follow-up results (440 healed, 400 healing, 360 disease) collected. Mask Region-based Convolutional Neural Network (Mask R-CNN) was used pixel-wise segment other structures in image trained predict class label into healing disease. Three annotated 1080 training, validation, testing. The evaluated on test set also comparison clinicians (general practitioners endodontists) without help independent 120 images. R-CNN prediction high mean average precision (mAP) 0.88 (95% CI 0.83–0.93) area under precision-recall curve 0.91 0.88–0.94), 0.83 0.81–0.85), 0.90–0.92) disease, respectively. metrics general significantly improved outperforming alone mAP increasing 0.75 0.72–0.78) 0.84 0.81–0.87) 0.85–0.91) 0.92 0.89–0.95), In conclusion, had potential treatment expected aid
Язык: Английский
Процитировано
0Advances in medical technologies and clinical practice book series, Год журнала: 2024, Номер unknown, С. 21 - 46
Опубликована: Дек. 31, 2024
This chapter systematically reviews the impact of Artificial Intelligence (AI) on dental diagnosis, focusing its applications in digital dentistry, particularly rural areas where access to quality care is limited. We conducted a review literature examining research articles, medical trials and case reports that explore use intelligence tools, like Google Cloud Vision API Vertex AI diagnosis. The looked into factors such as accuracy effectiveness impact, patients results. findings suggests powered diagnostic systems greatly improve efficiency diagnoses detecting cavities, gum diseases other oral health issues. Utilizing cloud based services offers options, for clinics areas, with limited resources encouraging early detection tailored treatment strategies. Despite challenges associated data privacy need model validation
Язык: Английский
Процитировано
0