Structures, Год журнала: 2023, Номер 54, С. 964 - 980
Опубликована: Июнь 3, 2023
Язык: Английский
Structures, Год журнала: 2023, Номер 54, С. 964 - 980
Опубликована: Июнь 3, 2023
Язык: Английский
Case Studies in Construction Materials, Год журнала: 2024, Номер 20, С. e03135 - e03135
Опубликована: Апрель 6, 2024
This study presents a comparative analysis of individual and ensemble learning algorithms (ELAs) to predict the compressive strength (CS) flexural (FS) plastic concrete. Multilayer perceptron neuron network (MLPNN), Support vector machine (SVM), random forest (RF), decision tree (DT) were used as base learners, which then combined with bagging Adaboost methods improve predictive performance. In addition, gene expression programming (GEP) was develop computational equations that can be CS FS An extensive database containing 357 125 data points obtained from literature, eight most impactful ingredients in model's development. The accuracy all models assessed using several statistical measures, including an error matrix, Akaike information criterion (AIC), K-fold cross-validation, other external validation equations. Furthermore, sensitivity SHAP performed evaluate input variables' relative significance impact on anticipated FS. Based measures criteria, GEP outpaces models, whereas, ELAs, SVR RF modified Bagging technique demonstrated superior SHapley Additive exPlanations (SHAP) reveal plastic, cement, water, age specimens have highest influence, while superplasticizer has lowest impact, is consistent experimental studies. Moreover, GUI GEP-based simple mathematical correlation enhance practical scope this effective tool for pre-mix design
Язык: Английский
Процитировано
38Construction and Building Materials, Год журнала: 2024, Номер 436, С. 136884 - 136884
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
38Results in Engineering, Год журнала: 2023, Номер 17, С. 100973 - 100973
Опубликована: Фев. 25, 2023
The most often utilized material in construction is concrete. High plasticity, good economy, safety, and exceptional durability are a few of its characteristics. Concrete type structural that needs to be strong enough withstand different loads. compressive strength the concrete members crucial mechanical characteristic because brittleness. Furthermore, with ternary blended cementitious materials sophisticated composite material. present study explores binary mixes silica fume, ceramic powder, bagasse ash, alccofine, determine flexural strength. Results compression tests show mixes, including ultra-fine have higher impact additional on surface morphology was examined using scanning electron microscopy various mixes. This investigates linear regression, KNearest Neighbors (KNN), Bayesian-optimized extreme gradient boosting estimate (BO-XGBoost). Using coefficient determination (R2), mean absolute error (MAE), square (MSE), prediction results further validated. In comparison, regression BO-XGBoost models high accuracy towards outcome as indicated by R2 value equal 0.883 0.880, respectively, while for KNN 0.736. Additionally, normalized feature importance included determining input variables significantly influenced sensitivity model indicates CaO SiO2 shows significant predict
Язык: Английский
Процитировано
42Scientific Reports, Год журнала: 2023, Номер 13(1)
Опубликована: Авг. 12, 2023
This study investigated the importance of applying explainable artificial intelligence (XAI) on different machine learning (ML) models developed to predict strength characteristics basalt-fiber reinforced concrete (BFRC). Even though ML is widely adopted in prediction concrete, black-box nature predictions hinders interpretation results. Among several attempts overcome this limitation by using AI, researchers have employed only a single explanation method. In study, we used three tree-based (Decision tree, Gradient Boosting and Light Machine) mechanical (compressive strength, flexural tensile strength) basal fiber For first time, two methods (Shapley additive explanations (SHAP) local interpretable model-agnostic (LIME)) provide for all models. These reveal underlying decision-making criteria complex models, improving end user's trust. The comparison highlights that obtained good accuracy predicting yet, their were either magnitude feature or order importance. disagreement pushes towards complicated based which further stresses (1) extending XAI-based research predictions, (2) involving domain experts evaluate XAI concludes with development "user-friendly computer application" enables quick basalt
Язык: Английский
Процитировано
36Arabian Journal for Science and Engineering, Год журнала: 2024, Номер 49(10), С. 13709 - 13727
Опубликована: Фев. 26, 2024
Язык: Английский
Процитировано
17Construction and Building Materials, Год журнала: 2023, Номер 407, С. 133485 - 133485
Опубликована: Сен. 28, 2023
Язык: Английский
Процитировано
19Heliyon, Год журнала: 2024, Номер 10(17), С. e36841 - e36841
Опубликована: Авг. 27, 2024
Язык: Английский
Процитировано
8Construction and Building Materials, Год журнала: 2024, Номер 426, С. 136176 - 136176
Опубликована: Апрель 8, 2024
Язык: Английский
Процитировано
6Construction and Building Materials, Год журнала: 2024, Номер 444, С. 137884 - 137884
Опубликована: Авг. 15, 2024
Язык: Английский
Процитировано
5Case Studies in Construction Materials, Год журнала: 2024, Номер unknown, С. e03763 - e03763
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
5