Integrating of Bayesian model averaging and formal likelihood function to enhance groundwater process modeling in arid environments DOI Creative Commons
Ahmad Jafarzadeh,

Abbas Khashei‐Siuki,

Mohsen Pourreza‐Bilondi

и другие.

Ain Shams Engineering Journal, Год журнала: 2024, Номер unknown, С. 103127 - 103127

Опубликована: Окт. 1, 2024

Язык: Английский

Enhancing drought monitoring with a multivariate hydrometeorological index and machine learning-based prediction in the south of Iran DOI
Hossein Zamanı, Zohreh Pakdaman,

Marzieh Shakari

и другие.

Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

0

Predicting groundwater levels in coastal aquifers using deep learning models: a comparative study of sedimentary and metamorphic aquifers in nova scotia DOI
Saeideh Samani, Meysam Vadiati, Özgür Kişi

и другие.

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Май 3, 2025

Язык: Английский

Процитировано

0

Machine Learning-based Model for Groundwater Quality Prediction: A Comprehensive Review and Future Time–Cost Effective Modelling Vision DOI

Farhan ‘Ammar Fardush Sham,

Ahmed El‐Shafie,

Wan Zurina Binti Jaafar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 19, 2025

Язык: Английский

Процитировано

0

Assessment and Modeling of Groundwater Quality Using GIS and Machine Learning Techniques for Drinking Purpose DOI
Hemant Raheja, Arun Goel, Mahesh Pal

и другие.

World Environmental and Water Resources Congress 2011, Год журнала: 2023, Номер unknown, С. 1092 - 1112

Опубликована: Май 18, 2023

Groundwater contamination is a severe problem that deteriorates ecosystems, human health, and plant/animal life. Assessment modeling of groundwater quality possible solution to tackle this problem. In study, 449 samples during the year 2018 in Haryana State, India, were analyzed for 13 water parameters such as pH, electrical conductivity (EC), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), carbonate (CO32–) bicarbonate (HCO3–), nitrate (NO3–), chloride (Cl–), sulfate (SO42–), fluoride (F–). Three machine learning techniques, say generalized linear model (GLM), distributed random trees (DRF), extremely (XRT), applied estimate index (WQI) drinking purposes. The prediction performances these three models are determined by using four error metrics, namely, coefficient determination (R2), root mean square (RMSE), maximum absolute (MAE), squared logarithmic (RMSLE). GLM has shown accuracy (R2 = 0.999964, RMSE 0.759963, MAE 0.525975, RMSLE 0.005606) best estimating WQI compared DRF XRT models. Further, results suggested approximately 53% fall under excellent good category drinking. For better assessment parameters, spatial distribution map also been plotted ArcGIS. expected will contribute effective management worldwide.

Язык: Английский

Процитировано

9

Acceptability of MEREC criteria compared to existing weighted WQI models to assess coastal groundwater quality in eastern India DOI
Chinmoy Ranjan Das, Subhasish Das

Journal of Coastal Conservation, Год журнала: 2023, Номер 27(5)

Опубликована: Сен. 6, 2023

Язык: Английский

Процитировано

8

Providing predictive models for quality parameters of groundwater resources in arid areas of central Iran: A case study of kashan plain DOI Creative Commons

Aysan Morovvati Zarajabad,

Mahdi Hadi, Ramin Nabizadeh

и другие.

Heliyon, Год журнала: 2024, Номер 10(11), С. e31493 - e31493

Опубликована: Май 17, 2024

Groundwater pollution can occur due to both anthropogenic and natural causes, leading a decline in water quality posing threat human health the environment. The of ground resources with chemical pollutants is often considered. To manage sustainably, ensuring their quantity crucial. Yet, testing groundwater be expensive time-consuming. So, using modeling predict parameters considered an efficient economical method. In this study, we examined three models dry regions by R programming language. random forest (RF) outperformed other developing predictive for quality. Also, multiple linear regression (MLR) model demonstrated strong performance, particularly predicting total hardness (TH) Aran Va Bidgol resources. decision tree (DT) did well but had lower performance than RF parameters. This approach efficacious field effective management protection enables assessment risks related

Язык: Английский

Процитировано

2

Application of machine learning and Fuzzy AHP for identification of suitable groundwater potential zones using field based hydrogeophysical and soil hydraulic factors in a complex hydrogeological terrain DOI
Sudipa Halder,

Sayak Karmakar,

Pratik Maiti

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 27, С. 101329 - 101329

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

2

Beach nourishment for coastal aquifers impacted by climate change and population growth using machine learning approaches DOI Creative Commons
Nand Lal Kushwaha, Kallem Sushanth, A. Patel

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122535 - 122535

Опубликована: Сен. 26, 2024

Язык: Английский

Процитировано

2

Mapping of groundwater availability in dry areas of rural and urban regions in India using IOT assisted deep learning classification model DOI

S.A. Senthilkumar,

A. Basi Reddy,

Anna Alphy

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 25, С. 101098 - 101098

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

1

Illuminating groundwater flow modeling uncertainty through spatial discretization and complexity exploration DOI
Saeideh Samani

Acta Geophysica, Год журнала: 2024, Номер unknown

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

0