Acta Geotechnica, Год журнала: 2021, Номер 17(2), С. 563 - 575
Опубликована: Май 25, 2021
Язык: Английский
Acta Geotechnica, Год журнала: 2021, Номер 17(2), С. 563 - 575
Опубликована: Май 25, 2021
Язык: Английский
Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2021, Номер 13(6), С. 1500 - 1512
Опубликована: Сен. 14, 2021
A novel and effective artificial neural network (ANN) optimized using differential evolution (DE) is first introduced to provide a robust reliable forecasting of jet grouted column diameters. The proposed computational method adopts the DE algorithm tackle difficulties in training performance networks optimize four quintessential hyper-parameters (i.e. epoch size, number neurons hidden layer, layers, regularization parameter) that govern efficacy. This approach further enhanced by stochastic gradient optimization allow 'expensive' computation efforts. ANN-DE trained prepared grouting dataset, then verified compared with prevalent machine learning tools, i.e. support vector (SVM). results show that, outperforms existing methods for predicting diameter columns since it well balances efficiency model performance. Specifically, achieved root mean square error (RMSE) values 0.90603 0.92813 testing phases, respectively. corresponding were 0.8905 0.9006 ANN, then, 0.87569 0.89968 SVM, paradigm bound be useful solving various geotechnical engineering problems regardless multi-dimension nonlinearity.
Язык: Английский
Процитировано
57Automation in Construction, Год журнала: 2022, Номер 142, С. 104488 - 104488
Опубликована: Июль 19, 2022
Язык: Английский
Процитировано
49Journal Of Big Data, Год журнала: 2022, Номер 9(1)
Опубликована: Апрель 28, 2022
Abstract As a new type of currency introduced in the millennium, cryptocurrency has established its ecosystems and attracts many people to use invest it. However, cryptocurrencies are highly dynamic volatile, making it challenging predict their future values. In this research, we multivariate prediction approach three different recurrent neural networks (RNNs), namely long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), gated unit (GRU). We also propose simple layers deep architecture for regression task study. From experimental results on five major cryptocurrencies, i.e., Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Tether (USDT), Binance Coin (BNB), find that both Bi-LSTM GRU have similar performance terms accuracy. execution time, results, where is slightly better lower variation average.
Язык: Английский
Процитировано
45International Journal of Pavement Research and Technology, Год журнала: 2023, Номер 17(3), С. 750 - 786
Опубликована: Фев. 13, 2023
Язык: Английский
Процитировано
39Construction and Building Materials, Год журнала: 2023, Номер 368, С. 130393 - 130393
Опубликована: Янв. 17, 2023
Язык: Английский
Процитировано
31Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 148, С. 105781 - 105781
Опубликована: Апрель 26, 2024
Язык: Английский
Процитировано
11Asian Journal of Civil Engineering, Год журнала: 2024, Номер 25(6), С. 4541 - 4562
Опубликована: Май 10, 2024
Язык: Английский
Процитировано
11Structures, Год журнала: 2024, Номер 66, С. 106837 - 106837
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
11Construction and Building Materials, Год журнала: 2021, Номер 282, С. 122704 - 122704
Опубликована: Фев. 26, 2021
Язык: Английский
Процитировано
53Transportation Geotechnics, Год журнала: 2021, Номер 29, С. 100591 - 100591
Опубликована: Июнь 1, 2021
Язык: Английский
Процитировано
52