Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy DOI
Yongqin Li, Wengang Zhang,

Runhong Zhang

и другие.

Acta Geotechnica, Год журнала: 2021, Номер 17(2), С. 563 - 575

Опубликована: Май 25, 2021

Язык: Английский

Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns DOI Creative Commons
Pierre Guy Atangana Njock, Shui‐Long Shen, Annan Zhou

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2021, Номер 13(6), С. 1500 - 1512

Опубликована: Сен. 14, 2021

A novel and effective artificial neural network (ANN) optimized using differential evolution (DE) is first introduced to provide a robust reliable forecasting of jet grouted column diameters. The proposed computational method adopts the DE algorithm tackle difficulties in training performance networks optimize four quintessential hyper-parameters (i.e. epoch size, number neurons hidden layer, layers, regularization parameter) that govern efficacy. This approach further enhanced by stochastic gradient optimization allow 'expensive' computation efforts. ANN-DE trained prepared grouting dataset, then verified compared with prevalent machine learning tools, i.e. support vector (SVM). results show that, outperforms existing methods for predicting diameter columns since it well balances efficiency model performance. Specifically, achieved root mean square error (RMSE) values 0.90603 0.92813 testing phases, respectively. corresponding were 0.8905 0.9006 ANN, then, 0.87569 0.89968 SVM, paradigm bound be useful solving various geotechnical engineering problems regardless multi-dimension nonlinearity.

Язык: Английский

Процитировано

57

Safety prediction of shield tunnel construction using deep belief network and whale optimization algorithm DOI

Shuangshuang Ge,

Wei Gao, Shuang Cui

и другие.

Automation in Construction, Год журнала: 2022, Номер 142, С. 104488 - 104488

Опубликована: Июль 19, 2022

Язык: Английский

Процитировано

49

Multivariate cryptocurrency prediction: comparative analysis of three recurrent neural networks approaches DOI Creative Commons
Seng Hansun, Arya Wicaksana, A.Q.M. Khaliq

и другие.

Journal Of Big Data, Год журнала: 2022, Номер 9(1)

Опубликована: Апрель 28, 2022

Abstract As a new type of currency introduced in the millennium, cryptocurrency has established its ecosystems and attracts many people to use invest it. However, cryptocurrencies are highly dynamic volatile, making it challenging predict their future values. In this research, we multivariate prediction approach three different recurrent neural networks (RNNs), namely long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), gated unit (GRU). We also propose simple layers deep architecture for regression task study. From experimental results on five major cryptocurrencies, i.e., Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Tether (USDT), Binance Coin (BNB), find that both Bi-LSTM GRU have similar performance terms accuracy. execution time, results, where is slightly better lower variation average.

Язык: Английский

Процитировано

45

CBR Prediction of Pavement Materials in Unsoaked Condition Using LSSVM, LSTM-RNN, and ANN Approaches DOI
Jitendra Khatti, Kamaldeep Singh Grover

International Journal of Pavement Research and Technology, Год журнала: 2023, Номер 17(3), С. 750 - 786

Опубликована: Фев. 13, 2023

Язык: Английский

Процитировано

39

The potential of industrial waste: Electric arc furnace slag (EAF) as recycled road construction materials DOI Creative Commons
Patimapon Sukmak, Gampanart Sukmak, Pre De Silva

и другие.

Construction and Building Materials, Год журнала: 2023, Номер 368, С. 130393 - 130393

Опубликована: Янв. 17, 2023

Язык: Английский

Процитировано

31

Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network DOI
Jiasen Liang, Xueming Du, Hongyuan Fang

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 148, С. 105781 - 105781

Опубликована: Апрель 26, 2024

Язык: Английский

Процитировано

11

Machine and deep learning-based prediction of flexural moment capacity of ultra-high performance concrete beams with/out steel fiber DOI
Faruk Ergen, Metin Katlav

Asian Journal of Civil Engineering, Год журнала: 2024, Номер 25(6), С. 4541 - 4562

Опубликована: Май 10, 2024

Язык: Английский

Процитировано

11

Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming DOI

Laiba Khawaja,

Muhammad Faisal Javed, Usama Asif

и другие.

Structures, Год журнала: 2024, Номер 66, С. 106837 - 106837

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

11

Improvement of flexural strength of concrete pavements using natural rubber latex DOI
Teerasak Yaowarat,

Apichat Suddeepong,

Menglim Hoy

и другие.

Construction and Building Materials, Год журнала: 2021, Номер 282, С. 122704 - 122704

Опубликована: Фев. 26, 2021

Язык: Английский

Процитировано

53

Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches DOI
Navid Kardani, Annan Zhou, Shui‐Long Shen

и другие.

Transportation Geotechnics, Год журнала: 2021, Номер 29, С. 100591 - 100591

Опубликована: Июнь 1, 2021

Язык: Английский

Процитировано

52