Neural Network-Based Prediction of Amplification Factors for Nonlinear Soil Behaviour: Insights into Site Proxies DOI Creative Commons
Ahmed Boudghene Stambouli, Lotfi Guizani

Applied Sciences, Год журнала: 2025, Номер 15(7), С. 3618 - 3618

Опубликована: Март 26, 2025

The identification of the most pertinent site parameters to classify soils in terms their amplification seismic ground motions is still prime interest earthquake engineering and codes. This study investigates many options for improving soil classifications order reduce deviation between “exact” predictions using wave propagation method used codes based on (site) factors. To this end, an exhaustive parametric carried out obtain nonlinear responses sets 324 clay sand columns constitute database neuronal network methods predict regression equations factors parameters. A wide variety combinations are considered study, namely, depth, shear velocity, stiffness underlaying bedrock, intensity frequency content excitation. AFs profiles under multiple records with different intensities contents obtained by propagation, where nonlinearity accounted through equivalent linear model iterative procedure. Then, a Generalized Regression Neural Network (GRNN) determine significant affecting AFs. second neural network, Radial Basis Function (RBF) develop simple practical prediction equations. Both whole period range specific short-, mid-, long-period ranges associated AFs, Fa, Fv, Fl, respectively, considered. results indicate that factor arbitrary profile can be satisfactorily approximated limited number sites record (two six). best parameter pair (PGA; resonance frequency, f0), which leads standard reduction at least 65%. For improved performance, we propose triplet PGA;Vs30;f0 Vs30 being average velocity within upper 30 m below foundation. Most other relevant include fact long periods (Fl) significantly higher than those short or mid soft soils. Finally, it recommended further refine including additional such as spatial configuration adopting more refined models.

Язык: Английский

Data-driven and physics-informed neural network for predicting tunnelling-induced ground deformation with sparse data of field measurement DOI
Yingbin Liu, Shaoming Liao, Yaowen Yang

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 152, С. 105951 - 105951

Опубликована: Июль 5, 2024

Язык: Английский

Процитировано

7

A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation DOI
Yunhao Wang, Luqi Wang, Wengang Zhang

и другие.

Journal of Central South University, Год журнала: 2024, Номер unknown

Опубликована: Авг. 5, 2024

Язык: Английский

Процитировано

7

Data-driven forward and inverse analysis of two-dimensional soil consolidation using physics-informed neural network DOI
Yu Wang, Chao Shi,

Jiangwei Shi

и другие.

Acta Geotechnica, Год журнала: 2024, Номер 19(12), С. 8051 - 8069

Опубликована: Май 23, 2024

Язык: Английский

Процитировано

6

A Review of Deep Learning Applications in Tunneling and Underground Engineering in China DOI Creative Commons

Chunsheng Su,

Qijun Hu, Zifan Yang

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(5), С. 1720 - 1720

Опубликована: Фев. 20, 2024

With the advent of era big data and information technology, deep learning (DL) has become a hot trend in research field artificial intelligence (AI). The use methods for parameter inversion, disease identification, detection, surrounding rock classification, disaster prediction, other tunnel engineering problems also new recent years, both domestically internationally. This paper briefly introduces development process learning. By reviewing number published papers on application over past 20 this discusses intelligent algorithms engineering, including collapse risk assessment, water inrush crack structural stability evaluation, seepage erosion mountain tunnels, urban subway subsea tunnels. Finally, it explores future challenges prospects engineering.

Язык: Английский

Процитировано

5

Data-Based postural prediction of shield tunneling via machine learning with physical information DOI

Jiaqi Chang,

Hongwei Huang, Markus Thewes

и другие.

Computers and Geotechnics, Год журнала: 2024, Номер 174, С. 106584 - 106584

Опубликована: Июль 13, 2024

Язык: Английский

Процитировано

5

Quantitative analysis and modification of dynamic p-y curve model for offshore wind turbines considering earthquake history effect based on deep learning DOI
Zhongchang Zhang, Jing Zhang,

Xiaofeng Wu

и другие.

Ocean Engineering, Год журнала: 2024, Номер 299, С. 117372 - 117372

Опубликована: Март 6, 2024

Язык: Английский

Процитировано

4

Physics-informed and data-driven machine learning of rock mass classification using prior geological knowledge and TBM operational data DOI
Chenhao Zhang, Yu Wang,

Lei-jie Wu

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 152, С. 105923 - 105923

Опубликована: Июль 4, 2024

Язык: Английский

Процитировано

4

Physics-guided neural network-based framework for 3D modeling of slope stability DOI
Zilong Zhang, Bowen Wang, Zheng‐Wei Li

и другие.

Computers and Geotechnics, Год журнала: 2024, Номер 176, С. 106801 - 106801

Опубликована: Окт. 5, 2024

Язык: Английский

Процитировано

4

Physics-based neural networks for the characterization and behavior assessment of construction materials DOI
Ahed Habib, M. Talha Junaid, Salah Altoubat

и другие.

Journal of Building Engineering, Год журнала: 2025, Номер 100, С. 111788 - 111788

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Upward propagation of ground disturbance induced by water–sand inrush into a defective tunnel in a dual-stratum geological condition DOI
Zhifu Shen, Yixin Zhao, Yang Lv

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 158, С. 106422 - 106422

Опубликована: Янв. 25, 2025

Язык: Английский

Процитировано

0