Опубликована: Ноя. 8, 2024
Язык: Английский
Опубликована: Ноя. 8, 2024
Язык: Английский
Water, Год журнала: 2024, Номер 16(19), С. 2870 - 2870
Опубликована: Окт. 9, 2024
Climate change affects the water cycle, resource management, and sustainable socio-economic development. In order to accurately predict climate in Weifang City, China, this study utilizes multiple data-driven deep learning models. The data for 73 years include monthly average air temperature (MAAT), minimum (MAMINAT), maximum (MAMAXAT), total precipitation (MP). different models artificial neural network (ANN), recurrent NN (RNN), gate unit (GRU), long short-term memory (LSTM), convolutional (CNN), hybrid CNN-GRU, CNN-LSTM, CNN-LSTM-GRU. CNN-LSTM-GRU MAAT prediction is best-performing model compared other with highest correlation coefficient (R = 0.9879) lowest root mean square error (RMSE 1.5347) absolute (MAE 1.1830). These results indicate that method a suitable model. This can also be used surface modeling. will help flood control management.
Язык: Английский
Процитировано
10Electronics, Год журнала: 2025, Номер 14(2), С. 331 - 331
Опубликована: Янв. 15, 2025
The aquatic environment in aquaculture serves as the foundation for survival and growth of animals, while a high-quality water is necessary condition promoting efficient healthy development. To effectively guide early warnings regulation quality aquaculture, this study proposes predictive model based on dual-channel dual-attention mechanism, namely, DAM-ResNet-LSTM model. This encompasses two parallel feature extraction channels: residual network (ResNet) long short-term memory (LSTM), with mechanisms integrated into each channel to enhance model’s representation capabilities. Then, proposed trained, validated, tested using meteorological parameter data collected by an offshore farm environmental monitoring system. results demonstrate that structure mechanism can significantly improve performance prediction accuracy pH, dissolved oxygen (DO), salinity (SAL) (with Nash coefficients 0.9361, 0.9396, 0.9342, respectively) higher than chemical demand (COD), ammonia nitrogen (NH3-N), nitrite (NO2−), active phosphate (AP) 0.8578, 0.8542, 0.8372, 0.8294, respectively). Compared single-channel DA-ResNet (ResNet mechanism), predicting DO, SAL, COD, NH3-N, NO2−, AP increase 12.76%, 12.58%, 11.68%, 18.350%, 19.32%, 16%, 14.99%, respectively. DA-LSTM (LSTM corresponding increases are 9.15%, 9.93%, 9.11%, 10.91%, 10.11%, 10.39%, 10.2%, ResNet-LSTM LSTM parallel) without attention improvements 1.91%, 2.4%, 0.74%, 3.41%, 2.71%, 3.55%, 4.13%, fulfills practical requirements accurate forecasting nearshore aquaculture.
Язык: Английский
Процитировано
1Environmental Earth Sciences, Год журнала: 2025, Номер 84(3)
Опубликована: Янв. 21, 2025
Язык: Английский
Процитировано
1Modeling Earth Systems and Environment, Год журнала: 2025, Номер 11(2)
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
1Water Resources Management, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
6Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Natural Hazards, Год журнала: 2025, Номер unknown
Опубликована: Март 15, 2025
Язык: Английский
Процитировано
0Urban Climate, Год журнала: 2025, Номер 61, С. 102415 - 102415
Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Journal of Atmospheric and Solar-Terrestrial Physics, Год журнала: 2024, Номер 263, С. 106339 - 106339
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
3Sensors, Год журнала: 2024, Номер 24(23), С. 7837 - 7837
Опубликована: Дек. 7, 2024
Weather prediction is of great significance for human daily production activities, global extreme climate prediction, and environmental protection the Earth. However, existing data-based weather methods cannot adequately capture spatial temporal evolution characteristics target region, which makes it difficult to meet practical application requirements in terms efficiency accuracy. Changes involve both strongly correlated continuation relationships, at same time, variables interact with each other, so capturing dynamic correlations among space, particularly important accurate prediction. Therefore, we designed a spatiotemporal coupled network based on convolution Transformer from perspective multivariate fields. First, attention encoder-decoder comprehensively explore representations extracting reconstructing features. Then, multi-scale module obtain patterns using inter- intra-frame computations. After that, order ensure that model has better ability local hotspot areas, composite loss function MSE SSIM focus structural distribution achieve more Finally, demonstrated excellent effect STWPM field by evaluating proposed algorithm classical algorithms ERA5 dataset region.
Язык: Английский
Процитировано
2