Potential Roles of Large Language Models in the Production of Systematic Reviews and Meta-Analyses DOI Creative Commons
Xufei Luo,

Fengxian Chen,

Di Zhu

и другие.

Journal of Medical Internet Research, Год журнала: 2024, Номер 26, С. e56780 - e56780

Опубликована: Май 31, 2024

Large language models (LLMs) such as ChatGPT have become widely applied in the field of medical research. In process conducting systematic reviews, similar tools can be used to expedite various steps, including defining clinical questions, performing literature search, document screening, information extraction, and refinement, thereby conserving resources enhancing efficiency. However, when using LLMs, attention should paid transparent reporting, distinguishing between genuine false content, avoiding academic misconduct. this viewpoint, we highlight potential roles LLMs creation reviews meta-analyses, elucidating their advantages, limitations, future research directions, aiming provide insights guidance for authors planning meta-analyses.

Язык: Английский

LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities DOI

Yuqi Zhu,

Xiaohan Wang, Jing Chen

и другие.

World Wide Web, Год журнала: 2024, Номер 27(5)

Опубликована: Авг. 21, 2024

Язык: Английский

Процитировано

54

Large language models for generative information extraction: a survey DOI Creative Commons
Derong Xu, Wei Chen,

Wenjun Peng

и другие.

Frontiers of Computer Science, Год журнала: 2024, Номер 18(6)

Опубликована: Ноя. 11, 2024

Abstract Information Extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works been proposed integrate LLMs for IE tasks based on paradigm. To conduct comprehensive systematic review exploration of LLM efforts tasks, this study, we survey the most recent advancements field. We first present an extensive overview by categorizing these terms various subtasks techniques, then empirically analyze advanced methods discover emerging trend with LLMs. Based thorough conducted, identify several insights technique promising research directions that deserve further future studies. maintain public repository consistently update related resources GitHub (LLM4IE repository).

Язык: Английский

Процитировано

37

AI for social science and social science of AI: A survey DOI
R. F. Xu, Yingfei Sun,

Mengjie Ren

и другие.

Information Processing & Management, Год журнала: 2024, Номер 61(3), С. 103665 - 103665

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

32

How Can Recommender Systems Benefit from Large Language Models: A Survey DOI
Jianghao Lin, Xinyi Dai, Yunjia Xi

и другие.

ACM transactions on office information systems, Год журнала: 2024, Номер unknown

Опубликована: Июль 13, 2024

With the rapid development of online services and web applications, recommender systems (RS) have become increasingly indispensable for mitigating information overload matching users’ needs by providing personalized suggestions over items. Although RS research community has made remarkable progress past decades, conventional recommendation models (CRM) still some limitations, e.g. , lacking open-domain world knowledge, difficulties in comprehending underlying preferences motivations. Meanwhile, large language (LLM) shown impressive general intelligence human-like capabilities various natural processing (NLP) tasks, which mainly stem from their extensive open-world logical commonsense reasoning abilities, as well comprehension human culture society. Consequently, emergence LLM is inspiring design pointing out a promising direction, i.e. whether we can incorporate benefit common knowledge to compensate limitations CRM. In this paper, conduct comprehensive survey on draw bird’s-eye view perspective whole pipeline real-world systems. Specifically, summarize existing works two orthogonal aspects: where how adapt RS. For “ WHERE ” question, discuss roles that could play different stages pipeline, feature engineering, encoder, scoring/ranking function, user interaction, controller. HOW investigate training inference strategies, resulting fine-grained taxonomy criteria, tune or not during training, involve inference. Detailed analysis paths are provided both “WHERE” “HOW” questions, respectively. Then, highlight key challenges adapting three aspects, efficiency, effectiveness, ethics. Finally, future prospects. To further facilitate LLM-enhanced systems, actively maintain GitHub repository papers other related resources rising direction 1 .

Язык: Английский

Процитировано

29

Large language models empowered agent-based modeling and simulation: a survey and perspectives DOI Creative Commons
Chen Gao, Xiaochong Lan, Nian Li

и другие.

Humanities and Social Sciences Communications, Год журнала: 2024, Номер 11(1)

Опубликована: Сен. 27, 2024

Язык: Английский

Процитировано

29

MechAgents: Large language model multi-agent collaborations can solve mechanics problems, generate new data, and integrate knowledge DOI Creative Commons
Bo Ni, Markus J. Buehler

Extreme Mechanics Letters, Год журнала: 2024, Номер 67, С. 102131 - 102131

Опубликована: Фев. 7, 2024

Язык: Английский

Процитировано

21

Empowering biomedical discovery with AI agents DOI Creative Commons

Shanghua Gao,

Ada Fang,

Yepeng Huang

и другие.

Cell, Год журнала: 2024, Номер 187(22), С. 6125 - 6151

Опубликована: Окт. 1, 2024

We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents integrate AI models tools with experimental platforms. Rather than taking humans out the discovery process, combine human creativity expertise AI's ability to analyze large datasets, navigate hypothesis spaces, execute repetitive tasks. are poised be proficient in various tasks, planning workflows performing self-assessment identify mitigate gaps their knowledge. These use language generative feature structured memory for continual machine incorporate scientific knowledge, biological principles, theories. can impact areas ranging from virtual cell simulation, programmable control phenotypes, design cellular circuits developing new therapies.

Язык: Английский

Процитировано

21

When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications DOI
Qidong Liu, Xian Wu, Xiangyu Zhao

и другие.

Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Год журнала: 2024, Номер unknown, С. 1104 - 1114

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

18

Building LLM-based AI Agents in Social Virtual Reality DOI Open Access
Hongyu Wan, Jinda Zhang,

Abdulaziz Arif Suria

и другие.

Опубликована: Май 11, 2024

In this paper, we introduce the design and evaluation of an LLM-based AI agent for human-agent interaction in Virtual Reality (VR). Our system leverages GPT-4, a Large Language Model (LLM) to simulate human behavior. agent, deployed VRChat as Non-playable Character (NPC), exhibits ability respond player by providing context-relevant responses followed appropriate facial expressions body gestures. preliminary yielded most optimal parameters generating plausible responses. With our system, lay groundwork future development NPCs VR.

Язык: Английский

Процитировано

17

ProtAgents: protein discovery via large language model multi-agent collaborations combining physics and machine learning DOI Creative Commons

Alireza Ghafarollahi,

Markus J. Buehler

Digital Discovery, Год журнала: 2024, Номер 3(7), С. 1389 - 1409

Опубликована: Янв. 1, 2024

ProtAgents is a de novo protein design platform based on multimodal LLMs, where distinct AI agents with expertise in knowledge retrieval, structure analysis, physics-based simulations, and results analysis tackle tasks dynamic setting.

Язык: Английский

Процитировано

17