Lung Cancers Associated with Cystic Airspaces DOI Open Access

Camilla Valsecchi,

Francesco Petrella, Stefania Freguia

и другие.

Cancers, Год журнала: 2025, Номер 17(2), С. 307 - 307

Опубликована: Янв. 18, 2025

Lung cancer, the second most common malignancy in both men and women, poses a significant health burden. Early diagnosis remains pivotal reducing lung cancer mortality. Given escalating number of computed tomography (CT) examinations outpatient inpatient settings, radiologists play crucial role identifying early-stage pulmonary cancers, particularly non-nodular cancers. Screening programs have been instituted to achieve this goal, they raised attention within scientific community cancers associated with cystic airspaces. These although known for at least decade, remain understudied. Limited investigations small sample sizes estimated their prevalence explored radiological pathological features. airspaces exhibit varying complexities components demonstrate suspicious changes over time. Adenocarcinoma is predominant histological type, often peripheral location. Differential on CT scans includes inflammatory processes or emphysema-related changes. Unfortunately, prospective studies specifically analyzing airspace-associated are lacking. However, it that constitute approximately one-fourth delayed diagnoses. Increased awareness among could lead more timely identification potentially reduce mortality cost-effective manner.

Язык: Английский

A Review of Deep Transfer Learning Approaches for Class-Wise Prediction of Alzheimer’s Disease Using MRI Images DOI

Pushpendra Singh Sisodia,

Gaurav Ameta, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2409 - 2429

Опубликована: Янв. 3, 2023

Язык: Английский

Процитировано

46

Foodborne Disease Symptoms, Diagnostics, and Predictions Using Artificial Intelligence-Based Learning Approaches: A Systematic Review DOI
Yogesh Kumar, Inderpreet Kaur, Shakti Mishra

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер unknown

Опубликована: Авг. 25, 2023

Язык: Английский

Процитировано

27

A Review on Prediction and Prognosis of the Prostate Cancer and Gleason Grading of Prostatic Carcinoma Using Deep Transfer Learning Based Approaches DOI
G. Prabu Kanna,

S J K Jagadeesh Kumar,

Pavithra Parthasarathi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3113 - 3132

Опубликована: Фев. 23, 2023

Язык: Английский

Процитировано

25

A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Genetic Disorders Using Various Gene Disorders DOI
Neelam Chaplot, Dhiraj Pandey, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3301 - 3323

Опубликована: Март 25, 2023

Язык: Английский

Процитировано

25

A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases DOI Open Access
Kavita Thakur, Manjot Kaur, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4477 - 4497

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

24

Enhancing parasitic organism detection in microscopy images through deep learning and fine-tuned optimizer DOI Creative Commons
Yogesh Kumar,

Pertik Garg,

Manu Raj Moudgil

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Март 8, 2024

Abstract Parasitic organisms pose a major global health threat, mainly in regions that lack advanced medical facilities. Early and accurate detection of parasitic is vital to saving lives. Deep learning models have uplifted the sector by providing promising results diagnosing, detecting, classifying diseases. This paper explores role deep techniques detecting various organisms. The research works on dataset consisting 34,298 samples parasites such as Toxoplasma Gondii, Trypanosome, Plasmodium, Leishmania, Babesia, Trichomonad along with host cells like red blood white cells. These images are initially converted from RGB grayscale followed computation morphological features perimeter, height, area, width. Later, Otsu thresholding watershed applied differentiate foreground background create markers for identification interest. transfer VGG19, InceptionV3, ResNet50V2, ResNet152V2, EfficientNetB3, EfficientNetB0, MobileNetV2, Xception, DenseNet169, hybrid model, InceptionResNetV2, employed. parameters these fine-tuned using three optimizers: SGD, RMSprop, Adam. Experimental reveal when RMSprop applied, EfficientNetB0 achieve highest accuracy 99.1% loss 0.09. Similarly, SGD optimizer, InceptionV3 performs exceptionally well, achieving 99.91% 0.98. Finally, applying Adam InceptionResNetV2 excels, 99.96% 0.13, outperforming other optimizers. findings this signify coupled image processing methods generates highly efficient way detect classify

Язык: Английский

Процитировано

14

Enhancing the detection of airway disease by applying deep learning and explainable artificial intelligence DOI
Apeksha Koul, Rajesh K. Bawa,

Yogesh Kumar

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер 83(31), С. 76773 - 76805

Опубликована: Фев. 21, 2024

Язык: Английский

Процитировано

10

The Biomedical Applications of Artificial Intelligence: An Overview of Decades of Research DOI

Sweet Naskar,

Suraj Sharma, Ketousetuo Kuotsu

и другие.

Journal of drug targeting, Год журнала: 2025, Номер unknown, С. 1 - 85

Опубликована: Янв. 2, 2025

A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis intricate biological data and extraction substantial associations from datasets for a variety biomedical uses. AI has attracted interest in research due its features: (i) better patient care through early diagnosis detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) costs; (vi) reducing morbidity mortality; (vii) enhancing performance; (viii) precision; (ix) time efficiency. Quantitative metrics are crucial evaluating implementations, providing insights, enabling informed decisions, measuring impact AI-driven initiatives, thereby transparency, accountability, overall impact. The implementation fields faces challenges such as ethical privacy concerns, lack awareness, technology unreliability, professional liability. brief discussion given techniques, which include Virtual screening (VS), DL, ML, Hidden Markov models (HMMs), Neural networks (NNs), Generative (GMs), Molecular dynamics (MD), Structure-activity relationship (SAR) models. study explores application fields, highlighting predictive accuracy, treatment efficacy, diagnostic efficiency, faster decision-making, personalized strategies, precise interventions.

Язык: Английский

Процитировано

2

An Analysis of Deep Transfer Learning-Based Approaches for Prediction and Prognosis of Multiple Respiratory Diseases Using Pulmonary Images DOI
Apeksha Koul, Rajesh K. Bawa, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(2), С. 1023 - 1049

Опубликована: Окт. 31, 2023

Язык: Английский

Процитировано

20

A Comprehensive Survey on Higher Order Neural Networks and Evolutionary Optimization Learning Algorithms in Financial Time Series Forecasting DOI
Sudersan Behera, Sarat Chandra Nayak, A. V. S. Pavan Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4401 - 4448

Опубликована: Май 23, 2023

Язык: Английский

Процитировано

18