Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Information Fusion, Год журнала: 2024, Номер 108, С. 102361 - 102361
Опубликована: Март 20, 2024
Язык: Английский
Процитировано
22Agriculture, Год журнала: 2025, Номер 15(4), С. 421 - 421
Опубликована: Фев. 17, 2025
To address the challenges of detecting cotton pests and diseases in natural environments, as well similarities features exhibited by diseases, a Lightweight Cotton Disease Detection Natural Environment (LCDDN-YOLO) algorithm is proposed. The LCDDN-YOLO based on YOLOv8n, replaces part convolutional layers backbone network with Distributed Shift Convolution (DSConv). BiFPN incorporated into original architecture, adding learnable weights to evaluate significance various input features, thereby enhancing detection accuracy. Furthermore, it integrates Partial (PConv) (DSConv) C2f module, called PDS-C2f. Additionally, CBAM attention mechanism neck improve model performance. A Focal-EIoU loss function also integrated optimize model’s training process. Experimental results show that compared YOLOv8, reduces number parameters 12.9% floating-point operations (FLOPs) 9.9%, while precision, mAP@50, recall 4.6%, 6.5%, 7.8%, respectively, reaching 89.5%, 85.4%, 80.2%. In summary, offers excellent accuracy speed, making effective for pest disease control fields, particularly lightweight computing scenarios.
Язык: Английский
Процитировано
1Computers in Biology and Medicine, Год журнала: 2023, Номер 165, С. 107385 - 107385
Опубликована: Авг. 16, 2023
Язык: Английский
Процитировано
19Applied Intelligence, Год журнала: 2024, Номер 54(7), С. 5907 - 5930
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
5Artificial Intelligence Review, Год журнала: 2023, Номер 56(11), С. 13787 - 13839
Опубликована: Апрель 19, 2023
Язык: Английский
Процитировано
9Image and Vision Computing, Год журнала: 2024, Номер unknown, С. 105344 - 105344
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3National Academy Science Letters, Год журнала: 2025, Номер unknown
Опубликована: Янв. 16, 2025
Язык: Английский
Процитировано
0Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 165 - 186
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Deleted Journal, Год журнала: 2024, Номер 6(8)
Опубликована: Авг. 1, 2024
Abstract Medical image fusion enhances diagnostic precision and facilitates clinical decision-making by integrating information from multiple medical imaging modalities. However, this field is still challenging as the output integrated image, whether spatial or transform domain algorithms, may suffer drawbacks such low contrast, blurring effect, noise, over smoothness, etc. Also, some existing novel works are restricted to specific datasets. So, address issues, a new multi-modal approach based on advantageous effects of transforms has been introduced in present work. For this, we use an adaptive decomposition tool known Hilbert vibration (HVD). HVD decomposes into different energy components, after proper source images, desirable features decomposed components then passed through guided filter (GF) for edge preservation. Then, Laplacian pyramid integrates these filtered parts using choose max rule. Since offers better resolution independent fixed cut-off frequencies like other transforms, subjective outputs method publicly available datasets clear than previously 20 state-of-the-art published results. Moreover, obtained values objective evaluation metrics entropy ( IE ): 7.6943, 5.9737, mean: 110.6453, 54.6346, standard deviation SD 85.5376, 61.8129, average gradient AG 109.2818, 64.6451, frequency SF 0.1475, 0.1100, metric Q HK/S 0.5400, 0.6511 demonstrate its comparability others. The algorithm's running period just 0.161244 s also indicates high computational efficiency.
Язык: Английский
Процитировано
1Heliyon, Год журнала: 2023, Номер 9(11), С. e21565 - e21565
Опубликована: Ноя. 1, 2023
As a crucial area of research in the field computer vision, food recognition technology has become core many food-related fields, such as unmanned restaurants and nutrition analysis, which are closely related to our healthy lives. Obtaining accurate classification results is most important task recognition. Food fine-grained process, involves extracting features from group objects with similar appearances accurately classifying them into different categories. In usage environment, network required not only overview overall image, but also capture subtle details within it. addition, since Chinese images have unique texture features, model needs extract information image. However, existing CNN methods focused on processed this information. To classify possible, paper introduces Laplace pyramid convolution layer proposes bilinear that can perceive image multi-scale (LMB-Net). The proposed was evaluated public dataset, demonstrate LMB-Net achieves state-of-the-art performance.
Язык: Английский
Процитировано
3