SGEO: Equalization Optimizer with Hybrid Learning Strategies for UAV Path Planning in Complex 3D Environments DOI Creative Commons
Meng Zheng,

Qing He,

Q. H. He

и другие.

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Март 15, 2024

Abstract Unmanned Aerial Vehicle (UAV) route planning is an intricate issue that requires the comprehensive consideration of multiple factors and combination suitable strategies to achieve efficient safe flight paths. Its purpose plan a navigational path for drone specific task or avoid obstacles. In practical applications, UAVs are usually required accomplish tasks in variety complex environments, resulting feasible paths will be reduced becomes difficult. Accordingly, we design simple yet useful planner, called Self-adaptive Golden Equilibrium Optimization algorithm (SGEO). The proposed combines new self-adaptive approach, acceleration control factor Golden-SA strategy order balance exploitation exploration capabilities. novel used expand global search range enhance its ability exploration; introduced parameters a1 a2 improve convergence algorithm; helps candidate particles better between different dimensions based on golden ratio sine function, this enables explore space more comprehensively. limitations UAV translated into objective four algorithms compare with SGEO two circumstances. simulation findings reveal excels at three-dimensional complicated environments.

Язык: Английский

A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems DOI
Betül Sultan Yıldız, Sumit Kumar, Natee Panagant

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 271, С. 110554 - 110554

Опубликована: Апрель 10, 2023

Язык: Английский

Процитировано

85

An improved algorithm optimization algorithm based on RungeKutta and golden sine strategy DOI
Mingying Li, Zhilei Liu,

Hongxiang Song

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 247, С. 123262 - 123262

Опубликована: Янв. 25, 2024

Язык: Английский

Процитировано

17

Reptile Search Algorithm: Theory, Variants, Applications, and Performance Evaluation DOI
Buddhadev Sasmal, Abdelazim G. Hussien, Arunita Das

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(1), С. 521 - 549

Опубликована: Авг. 26, 2023

Язык: Английский

Процитировано

27

Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation DOI
Buddhadev Sasmal, Arunita Das, Krishna Gopal Dhal

и другие.

Computer Science Review, Год журнала: 2025, Номер 56, С. 100727 - 100727

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Improving flood-prone areas mapping using geospatial artificial intelligence (GeoAI): A non-parametric algorithm enhanced by math-based metaheuristic algorithms DOI
Seyed Vahid Razavi-Termeh, Abolghasem Sadeghi‐Niaraki, Farman Ali

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124238 - 124238

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

1

Chaotic Puma Optimizer Algorithm for controlling wheeled mobile robots DOI Creative Commons

Mohamed Kmich,

Nawal El Ghouate,

Ahmed Bencharqui

и другие.

Engineering Science and Technology an International Journal, Год журнала: 2025, Номер 63, С. 101982 - 101982

Опубликована: Фев. 2, 2025

Язык: Английский

Процитировано

1

Optimal allocation of distribution generation sources with sustainable energy management in radial distribution networks using metaheuristic algorithm DOI
Amit Chakraborty, Saheli Ray

Computers & Electrical Engineering, Год журнала: 2024, Номер 116, С. 109142 - 109142

Опубликована: Фев. 29, 2024

Язык: Английский

Процитировано

6

A Comprehensive Survey on African Vulture Optimization Algorithm DOI
Buddhadev Sasmal, Arunita Das, Krishna Gopal Dhal

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(3), С. 1659 - 1700

Опубликована: Ноя. 30, 2023

Язык: Английский

Процитировано

13

Advancements in Q‐learning meta‐heuristic optimization algorithms: A survey DOI
Yang Yang, Yuchao Gao, Zhe Ding

и другие.

Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2024, Номер 14(6)

Опубликована: Авг. 18, 2024

Abstract This paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects QLMA, including parameter adaptation, operator selection, and balancing global exploration local exploitation. QLMA has become a leading solution industries like energy, power systems, engineering, addressing range mathematical challenges. Looking forward, we suggest further integration, transfer learning strategies, techniques to reduce state space. article is categorized under: Technologies > Computational Intelligence Artificial

Язык: Английский

Процитировано

4

Performance evaluation of submerged FSW for aluminum 6061 employing AOA-ANN based on experimental data DOI

Ekta Shrivastava,

Pankaj Shrivastava, Pushpendra Singh

и другие.

Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, Год журнала: 2025, Номер unknown

Опубликована: Фев. 9, 2025

Submerged friction stir welding (SFSW) under water is a relatively new solid state joining process, which combines heating and mechanical work for deformation to achieve high quality, defect-free joints. In the present research aluminum-6061 alloy has been welded by using SFSW. Tool rotational speed, feed temperature taken as important control variables estimate joint performance in terms of hardness tensile strength. It was observed that average grain size obtained zone around 3.5 μm, maximum 87 HV strength 175 MPa. Predictive models artificial neural networks (ANNs) were developed both strength, followed process optimization utilizing four distinct evolutionary techniques: arithmetic algorithm (AOA), Jaya Rao-3 algorithm. Among these, AOA demonstrated superior within manufacturing environment. As compared experimental values AOA, show improvement 6.33% 0.35% respectively.

Язык: Английский

Процитировано

0