Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm DOI Creative Commons
Guohao Wang, Xun Li

Sensors, Год журнала: 2024, Номер 25(1), С. 69 - 69

Опубликована: Дек. 26, 2024

To solve the coverage problem caused by random deployment of wireless sensor network nodes in forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on standard (MPA). Firstly, tent mapping integrated into initialization step to improve searching ability early stage. Secondly, hybrid search strategy used enhance and jump out local optimum. Thirdly, golden sine guiding mechanism applied accelerate convergence algorithm. Finally, stage-adjustment proposed make transition stages more smoothly. Six specific test functions chosen from CEC2017 function benchmark are evaluate performance MMPA. It shows that this has good optimization capability stability compared MPA, grey wolf optimizer, cosine algorithm, sea horse optimizer. The results tests show MMPA better uniformity node distribution MPA. average rates highest commonly metaheuristic-based algorithms, which 91.8% scenario 1, 95.98% 2, 93.88% 3, respectively. This demonstrates superiority network.

Язык: Английский

Optimization of electric vehicle design problems using improved electric eel foraging optimization algorithm DOI
Pranav Mehta, Betül Sultan Yıldız, Sadiq M. Sait

и другие.

Materials Testing, Год журнала: 2024, Номер 66(8), С. 1230 - 1240

Опубликована: Июль 5, 2024

Abstract This paper introduces a novel approach, the Modified Electric Eel Foraging Optimization (EELFO) algorithm, which integrates artificial neural networks (ANNs) with metaheuristic algorithms for solving multidisciplinary design problems efficiently. Inspired by foraging behavior of electric eels, algorithm incorporates four key phases: interactions, resting, hunting, and migrating. Mathematical formulations each phase are provided, enabling to explore exploit solution spaces effectively. The algorithm’s performance is evaluated on various real-world optimization problems, including weight engineering components, economic pressure handling vessels, cost welded beams. Comparative analyses demonstrate superiority MEELFO in achieving optimal solutions minimal deviations computational effort compared existing methods.

Язык: Английский

Процитировано

24

Energy management of a microgrid with integration of renewable energy sources considering energy storage systems with electricity price DOI
Tao Hai, Narinderjit Singh Sawaran Singh,

Farajollah Hosseini S Jamal

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 110, С. 115191 - 115191

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

3

A coupled extreme gradient boosting-MPA approach for estimating daily reference evapotranspiration DOI
Mohammed Achite, Hamid Nasiri, Okan Mert Katipoğlu

и другие.

Theoretical and Applied Climatology, Год журнала: 2025, Номер 156(2)

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

3

Enhanced marine predator algorithm for global optimization and engineering design problems DOI
Salih Berkan Aydemı̇r

Advances in Engineering Software, Год журнала: 2023, Номер 184, С. 103517 - 103517

Опубликована: Июнь 28, 2023

Язык: Английский

Процитировано

29

Optimizing Gaussian process regression (GPR) hyperparameters with three metaheuristic algorithms for viscosity prediction of suspensions containing microencapsulated PCMs DOI Creative Commons
Tao Hai, Ali Basem, As’ad Alizadeh

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 31, 2024

Abstract Suspensions containing microencapsulated phase change materials (MPCMs) play a crucial role in thermal energy storage (TES) systems and have applications building materials, textiles, cooling systems. This study focuses on accurately predicting the dynamic viscosity, critical thermophysical property, of suspensions MPCMs MXene particles using Gaussian process regression (GPR). Twelve hyperparameters (HPs) GPR are analyzed separately classified into three groups based their importance. Three metaheuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), marine predators (MPA), employed to optimize HPs. Optimizing four most significant (covariance function, basis standardization, sigma) within first group any algorithms resulted excellent outcomes. All achieved reasonable R-value (0.9983), demonstrating effectiveness this context. The second explored impact including additional, moderate-significant HPs, such as fit method, predict method optimizer. While resulting models showed some improvement over group, PSO-based model exhibited noteworthy enhancement, achieving higher (0.99834). Finally, third was examine potential interactions between all twelve comprehensive approach, employing GA, yielded an optimized with highest level target compliance, reflected by impressive 0.999224. developed cost-effective efficient solution reduce laboratory costs for various systems, from TES management.

Язык: Английский

Процитировано

11

Improving microgrid frequency stability through PI-PIDA-driven STATCOM optimization using a hybrid metaheuristic algorithm DOI
Saqif Imtiaz, Lijun Yang, Hafiz Mudassir Munir

и другие.

Energy Reports, Год журнала: 2025, Номер 13, С. 2907 - 2932

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

1

Optimizing Rotary Cement Kiln modelling: A comparative analysis of metaheuristic in a real-world application DOI Creative Commons
Miguel Ángel Castán-Lascorz, A. Moreno, J. Arroyo

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 103945 - 103945

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility DOI
M Wang,

Yu Meng,

Lei Sun

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126864 - 126864

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

A hybrid CNN-SVM model optimized with PSO for accurate and non-invasive brain tumor classification DOI

Tanay Semwal,

Surbhi Jain, Agradeep Mohanta

и другие.

Neural Computing and Applications, Год журнала: 2025, Номер unknown

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

1

Analysis of Marine Predators Algorithm using BIAS toolbox and Generalized Signature Test DOI Creative Commons

Manish Kumar,

Kanchan Rajwar, Kusum Deep

и другие.

Alexandria Engineering Journal, Год журнала: 2024, Номер 95, С. 38 - 49

Опубликована: Март 29, 2024

The Marine Predators Algorithm (MPA) is a prominent Nature-Inspired Optimization (NIOA) that has garnered significant research interest due to its effectiveness. It draws inspiration from the foraging behaviors of marine predators, predominantly using Lévy or Brownian approach for strategy. Despite acclaim, structural bias within MPA not been thoroughly investigated, marking gap in current research. This absence targeted forms core rationale behind initiating this study. Structural recently identified NIOAs, causing population revisit specific regions search space without gaining new information. As result, it may lead increased computational costs and slow down rate convergence. Therefore, identifying essential better understand mechanism MPA. To ascertain presence any bias, two introduced models are employed: BIAS toolbox Generalized Signature Test. These examinations reveal notable MPA, towards center space. Also, possible future directions discussed. Our findings provide valuable insights into dynamics algorithm, fostering development new, unbiased, efficient algorithms.

Язык: Английский

Процитировано

6