A comparative study of wavelet families for schizophrenia detection DOI Creative Commons

E. Sathiya,

Tharasi Dilleswar Rao,

T. Sunil Kumar

и другие.

Frontiers in Human Neuroscience, Год журнала: 2024, Номер 18

Опубликована: Дек. 10, 2024

Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the global population, it believed to result from various environmental factors, with psychological factors potentially influencing its onset and progression. Discrete wavelet transform (DWT)-based approaches are effective in SZ detection. In this report, we aim investigate effect decomposition levels our study, analyzed early detection using DWT across levels, ranging 1 5, different mother wavelets. The electroencephalogram (EEG) signals processed DWT, which decomposes them into multiple frequency bands, yielding approximation detail coefficients at each level. Statistical features then extracted these coefficients. computed feature vector fed classifier distinguish between healthy controls (HC). Our approach achieves highest classification accuracy 100% on publicly available dataset, outperforming existing state-of-the-art methods.

Язык: Английский

Early Diagnosis of Schizophrenia in EEG Signals Using One Dimensional Transformer Model DOI
Afshin Shoeibi, Mahboobeh Jafari,

Delaram Sadeghi

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 139 - 149

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

5

SchizoLMNet: a modified lightweight MobileNetV2- architecture for automated schizophrenia detection using EEG-derived spectrograms DOI Creative Commons
A. Prabhakara Rao, Rakesh Ranjan, Bikash Chandra Sahana

и другие.

Physical and Engineering Sciences in Medicine, Год журнала: 2025, Номер unknown

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

0

Machine Learning with Brain Data DOI
Ujwal Chaudhary

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Schizophrenia Identification Using Machine Learning Methods with Graph-Theoretic Features DOI

Geng Zhu,

Qi Xu,

Fengzhu Zhang

и другие.

Journal of Shanghai Jiaotong University (Science), Год журнала: 2025, Номер unknown

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

EEG-based schizophrenia detection: integrating discrete wavelet transform and deep learning DOI

Dayanand Dhongade,

Kamal Captain, Sonika Dahiya

и другие.

Cognitive Neurodynamics, Год журнала: 2025, Номер 19(1)

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

0

Investigating the interpretability of schizophrenia EEG mechanism through a 3DCNN-based hidden layer features aggregation framework DOI
Zhifen Guo, Jiao Wang,

Tianyu Jing

и другие.

Computer Methods and Programs in Biomedicine, Год журнала: 2024, Номер 247, С. 108105 - 108105

Опубликована: Март 1, 2024

Язык: Английский

Процитировано

3

Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals DOI
Rakesh Ranjan, Bikash Chandra Sahana

Cognitive Neurodynamics, Год журнала: 2024, Номер 18(5), С. 2779 - 2807

Опубликована: Май 11, 2024

Язык: Английский

Процитировано

2

Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review DOI Creative Commons
Seokho Yun

Journal of Yeungnam Medical Science, Год журнала: 2024, Номер 41(4), С. 261 - 268

Опубликована: Сен. 9, 2024

Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress functional impairment, leading social economic losses. Biomarkers are essential diagnosing, predicting, treating, monitoring various diseases. However, their absence in psychiatry is linked the complex structure brain direct modalities. This review examines potential electroencephalography (EEG) as neurophysiological tool identifying biomarkers. EEG noninvasively measures electrophysiological activity used diagnose neurological disorders, such depression, bipolar disorder (BD), schizophrenia, identify Despite extensive research, EEG-based have not been clinically utilized owing measurement analysis constraints. studies revealed spectral complexity brainwave abnormalities BD, power schizophrenia. no currently treatment disorders. The advantages include real-time data acquisition, noninvasiveness, cost-effectiveness, high temporal resolution. Challenges low spatial resolution, susceptibility interference, interpretation limit its clinical application. Integrating with other neuroimaging techniques, advanced signal processing, standardized protocols overcome these limitations. Artificial intelligence may enhance biomarker discovery, potentially transforming care by providing early diagnosis, personalized improved disease progression monitoring.

Язык: Английский

Процитировано

2

AI in Neurodegeneration Prediction DOI

Neelima Priyanka Nutulapati,

Naresh Babu Karunakaran,

V. Banupriya

и другие.

Advances in medical technologies and clinical practice book series, Год журнала: 2024, Номер unknown, С. 114 - 130

Опубликована: Июнь 28, 2024

This chapter explores the capability of artificial intelligence (AI) in predicting development neurodegenerative sicknesses, particular focusing on Alzheimer's ailment. The goal is to recognize cutting-edge nation AI studies this area and identify rising superior procedures. Through conducting a complete literature evaluation reading existing research, authors spotlight strengths barriers use for neurodegeneration prediction. Similarly, they discuss role huge information, system mastering, deep mastering strategies developing accurate reliable prediction models. These findings endorse that has capacity seriously enhance early diagnosis disease progression. We conclude with ability future instructions demanding situations unexpectedly increasing vicinity

Язык: Английский

Процитировано

1

Intelligent Techniques for Detection and Diagnosis of Neurodegenerative Diseases DOI
Deepak Varadam, Sahana P. Shankar, Pranathi Hegde

и другие.

Advances in medical technologies and clinical practice book series, Год журнала: 2024, Номер unknown, С. 293 - 319

Опубликована: Июнь 28, 2024

The benefits of AI, such as its ability to analyse vast data sets, identify meaningful patterns, make accurate predictions, and provide reliable recommendations have proven very efficient in early precise diagnosis various neurodegenerative diseases. main aim is emphasise the potential machine learning artificial intelligence advance disease evaluation treatment planning. A brief description objectives methodologies used for intelligent techniques clearly explained with suitable case studies. study also demonstrates how learning, signal processing, computer-aided diagnostic technologies assist physicians making better clinical decisions. This proposal outlines a research paper that aims investigate different AI ML algorithms are employed three diseases namely, Alzheimer's (AD), Parkinson's (PD), Amyotrophic lateral sclerosis (ALS).

Язык: Английский

Процитировано

1