A comprehensive review of sensor node deployment strategies for maximized coverage and energy efficiency in wireless sensor networks DOI Creative Commons

P. Anusuya,

C.N. Vanitha,

Jaehyuk Cho

и другие.

PeerJ Computer Science, Год журнала: 2024, Номер 10, С. e2407 - e2407

Опубликована: Ноя. 27, 2024

Wireless Sensor Networks (WSNs) have paved the way for a wide array of applications, forming backbone systems like smart cities. These support various functions, including healthcare, environmental monitoring, traffic management, and infrastructure monitoring. WSNs consist multiple interconnected sensor nodes base station, creating network whose performance is heavily influenced by placement nodes. Proper deployment crucial as it maximizes coverage minimizes unnecessary energy consumption. Ensuring effective node optimal efficiency remains significant research gap in WSNs. This review article focuses on optimization strategies WSN deployment, addressing key questions related to maximization energy-efficient algorithms. A common limitation existing single-objective algorithms their focus optimizing either or efficiency, but not both. To address this, explores dual-objective approach, formulated maximizing Max ∑(i = 1) ^ N C i minimizing consumption Min E nodes, balance both objectives. The analyses recent evaluates performance, provides comprehensive comparative analysis, offering directions future making unique contribution literature.

Язык: Английский

Machine Learning Optimization Techniques: A Survey, Classification, Challenges, and Future Research Issues DOI

Kewei Bian,

Rahul Priyadarshi

Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown

Опубликована: Март 29, 2024

Язык: Английский

Процитировано

39

A novel wireless sensor network deployment for monitoring and predicting abnormal actions in medical environment and patient health state DOI Creative Commons
R. Manikandan, S. Arun Prakash,

Rakan A. Alsowail

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 119, С. 149 - 167

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

2

Evolution of Swarm Intelligence: A Systematic Review of Particle Swarm and Ant Colony Optimization Approaches in Modern Research DOI
Rahul Priyadarshi, Ravi Kumar

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

2

Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches DOI
Ravi Kumar, Rahul Priyadarshi

Multimedia Tools and Applications, Год журнала: 2024, Номер unknown

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

9

Techniques employed in distributed cognitive radio networks: a survey on routing intelligence DOI
Rahul Priyadarshi, Ravi Kumar, Ying Zhang

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер unknown

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

7

Research on Image Recognition and Classification Algorithms in Cloud Computing Environment Based on Deep Neural Networks DOI Creative Commons

Zihang Jia

IEEE Access, Год журнала: 2025, Номер 13, С. 19728 - 19754

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Enhancing Coverage in Wireless Sensor Networks Using Machine Learning Techniques DOI
Rahul Priyadarshi, Raj Vikram,

ZeKun Huang

и другие.

Опубликована: Июнь 11, 2024

Язык: Английский

Процитировано

5

A Comprehensive Approach Toward Wheat Leaf Disease Identification Leveraging Transformer Models and Federated Learning DOI Creative Commons
Md. Fahim-Ul-Islam, Amitabha Chakrabarty,

Sarder Tanvir Ahmed

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 109128 - 109156

Опубликована: Янв. 1, 2024

Wheat is one of the most extensively cultivated crops worldwide that contributes significantly to global food caloric and protein production grown on millions hectares yearly. However, diseases like brown rust, septoria, yellow other fungus pose notable threats wheat crops, impacting quality. Diagnosing these challenging, especially in areas with limited agricultural experts. Thus, creating computerized disease identification decision-support technologies crucial for safeguarding leaf preservation crop loss mitigation. The traditional approach integrating data gathering model training has substantial challenges terms confidentiality, availability, costs related transmission. To address challenges, federated learning (FL) an appealing effective option. Our study focuses applying FL classify using image analysis. In our study, we conduct experiments high-parameterized transfer (TL) models along proposed architecture based attention mechanism, introducing into a distributed strategy founded FL. leverages beneficial interactions two cutting-edge vision transformer including advanced depthwise incorporating self-attention referred as CoAtNets, enhanced Swin Transformer V2, resulting feature representation. Moreover, introduce weight pruning which further classified by reinforced linear mechanism (LA) lower output dimensions. pruned lightweight (32M parameters) considerably decreases inference time 624.249 ms 644.899 devices low computational power, making it highly efficient FL-based systems. system outperforms all tested models, ConvNeXtBase, ConvNeXtLarge, EfficientNetV2L, InceptionResNetV2, ResNet152, NASNetLarge, achieving accuracies up 98% 99%, precision 98%, recall F-1 scores 95% across multiple input dimensions classification.

Язык: Английский

Процитировано

5

Large Language Models Meet Next-Generation Networking Technologies: A Review DOI Creative Commons
Ching Nam Hang, Pei-Duo Yu, Roberto Morabito

и другие.

Future Internet, Год журнала: 2024, Номер 16(10), С. 365 - 365

Опубликована: Окт. 7, 2024

The evolution of network technologies has significantly transformed global communication, information sharing, and connectivity. Traditional networks, relying on static configurations manual interventions, face substantial challenges such as complex management, inefficiency, susceptibility to human error. rise artificial intelligence (AI) begun address these issues by automating tasks like configuration, traffic optimization, security enhancements. Despite their potential, integrating AI models in engineering encounters practical obstacles including configurations, heterogeneous infrastructure, unstructured data, dynamic environments. Generative AI, particularly large language (LLMs), represents a promising advancement with capabilities extending natural processing translation, summarization, sentiment analysis. This paper aims provide comprehensive review exploring the transformative role LLMs modern engineering. In particular, it addresses gaps existing literature focusing LLM applications design planning, implementation, analytics, management. It also discusses current research efforts, challenges, future opportunities, aiming guide for networking professionals researchers. main goal is facilitate adoption networking, promoting more efficient, resilient, intelligent systems.

Язык: Английский

Процитировано

5

Policy Framework for Realizing Net-Zero Emission in Smart Cities DOI

Peiying Wang,

Rahul Priyadarshi

Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown

Опубликована: Апрель 30, 2024

Язык: Английский

Процитировано

4