Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Structures, Год журнала: 2025, Номер 74, С. 108650 - 108650
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
2Journal of Contaminant Hydrology, Год журнала: 2024, Номер 269, С. 104480 - 104480
Опубликована: Дек. 10, 2024
Язык: Английский
Процитировано
6Structural and Multidisciplinary Optimization, Год журнала: 2025, Номер 68(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Vibration, Год журнала: 2025, Номер 8(1), С. 7 - 7
Опубликована: Фев. 20, 2025
This paper proposes a unified reliability analysis framework for mechanical and structural systems equipped with Tuned Mass Dampers (TMDs), encompassing single-degree-of-freedom (1-DOF), two-degrees-of-freedom (2-DOF), ten-degrees-of-freedom (10-DOF) configurations. The methodology integrates four main components: (i) probabilistic uncertainty modeling mass, damping, stiffness, (ii) Latin Hypercube Sampling (LHS) to efficiently explore parameter variations, (iii) Monte Carlo simulation (MCS) estimating failure probabilities under stochastic excitations, (iv) machine learning models, including Random Forest (RF), Gradient Boosting (GB), Extreme (XGBoost), Neural Networks (NNs), predict responses probabilities. results demonstrate that ensemble methods, such as RF XGBoost, provide high accuracy can effectively identify important features. perform well capturing nonlinear behavior, although careful tuning is required prevent overfitting. further extended 10-DOF structure, the confirm learning-based models are highly effective large-scale analysis. These findings highlight synergy between methods data-driven in enhancing of TMD uncertain inputs.
Язык: Английский
Процитировано
0Sustainable Energy Technologies and Assessments, Год журнала: 2025, Номер 77, С. 104299 - 104299
Опубликована: Апрель 14, 2025
Язык: Английский
Процитировано
0Aerospace Science and Technology, Год журнала: 2025, Номер unknown, С. 110257 - 110257
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 21, 2025
Язык: Английский
Процитировано
0Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 435, С. 117680 - 117680
Опубликована: Дек. 18, 2024
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126343 - 126343
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0Journal of Civil Structural Health Monitoring, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 4, 2024
Abstract Evolutionary game theory allows determining directly the solution of maximum likelihood finite element model updating problem via transformation a bi-objective optimization into problem. The formulation as avoids computation Pareto front and subsequent decision-making problem, selection best among elements front. For this purpose, each term function is considered player that interacts collaboratively or non-collaboratively with other during game. One main advantages method different global algorithm can be associated player. In manner, higher performance in expected linking between objective (a player) for its minimization. study, advantage analysed detail. process real footbridge, Viana do Castelo has been benchmark. As algorithms, nature-inspired computational algorithms have considered. solved using two methods: (i) conventional together method; (ii) an evolutionary method. result, highlighted. Additionally, influence noted.
Язык: Английский
Процитировано
0