Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(6), С. 114293 - 114293
Опубликована: Окт. 9, 2024
Язык: Английский
Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(6), С. 114293 - 114293
Опубликована: Окт. 9, 2024
Язык: Английский
Journal of Electrical Engineering, Год журнала: 2025, Номер 76(1), С. 72 - 79
Опубликована: Фев. 1, 2025
Abstract This paper presents an approach based on eddy currents induced by suitable magnetic induction fields to test, estimate, and classify subsurface delaminations in Carbon Fibre Reinforced Polymer (CFRP) plates for biomedical devices. The two-dimensional maps obtained, characterised high fuzziness, required the software development of a procedure highly efficient fuzzy classifier that exploits similarity computations with reduced computational load collecting similar (deriving from equally defects) specific defects. hardware implementation what is designed (plate-probe system) detects evaluates entity defects due classification percentage comparable performances obtained more sophisticated classifiers, providing possible tool evaluating potentially useful assess aircraft compliance applicable safety standards.
Язык: Английский
Процитировано
10Geoscience Frontiers, Год журнала: 2024, Номер 15(6), С. 101898 - 101898
Опубликована: Июль 31, 2024
As an essential property of frozen soils, change unfrozen water content (UWC) with temperature, namely soil-freezing characteristic curve (SFCC), plays significant roles in numerous physical, hydraulic and mechanical processes cold regions, including the heat transfer within soils at land–atmosphere interface, frost heave thaw settlement, as well simulation coupled thermo-hydro-mechanical interactions. Although various models have been proposed to estimate SFCC, their applicability remains limited due derivation from specific soil types, treatments, test devices. Accordingly, this study proposes a novel data-driven model predict SFCC using extreme Gradient Boosting (XGBoost) model. A systematic database for compiled extensive experimental investigations via testing methods was utilized train XGBoost The predicted freezing curves (SFCC, UWC function temperature) well-trained were compared original data three conventional models. results demonstrate superior performance over traditional predicting SFCC. This provides valuable insights future regarding soils.
Язык: Английский
Процитировано
10Canadian Geotechnical Journal, Год журнала: 2025, Номер 62, С. 1 - 17
Опубликована: Янв. 1, 2025
Artificial ground freezing (AGF) is a widely used technique for soil stabilization and waterproofing. Numerous studies have been devoted to solving the heat transfer problems in AGF while encountering limitations handling complex geometries boundary conditions being computationally intensive. Recently, using machine learning methods predict temperature fields has gained attention, demonstrating potential achieve higher accuracy than conventional models. However, these are typically limited by need large, labeled datasets, which time-consuming difficult obtain. In this study, we address challenges applying physics-informed neural networks (PINNs) solve steady-state problem AGF, focusing on distribution around single pipe. By embedding conduction equation into loss function, PINNs reduce extensive data. To enhance efficiency, employed, results compared against finite element method. Results show that high accuracy, particularly larger domains with moderate gradients, providing competitive performance more configurations involving steeper gradients. This approach offers promising alternative modeling geotechnical applications, implications reducing computational costs design.
Язык: Английский
Процитировано
1Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3Cold Regions Science and Technology, Год журнала: 2025, Номер unknown, С. 104510 - 104510
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Computers and Geotechnics, Год журнала: 2025, Номер 184, С. 107251 - 107251
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0Computer Methods in Applied Mechanics and Engineering, Год журнала: 2025, Номер 442, С. 118025 - 118025
Опубликована: Май 8, 2025
Язык: Английский
Процитировано
0Environmental Earth Sciences, Год журнала: 2025, Номер 84(12)
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0Processes, Год журнала: 2024, Номер 12(9), С. 1819 - 1819
Опубликована: Авг. 27, 2024
Permafrost is a temperature-sensitive geological formation characterized by low elasticity and high plasticity. Inappropriate engineering design during borehole drilling in permafrost can result the collapse of surrounding strata. To evaluate stability walls, finite element model was developed based on inherent physical properties permafrost. This utilized to investigate thermal, stress, plastic yield zone evolution around with normal-temperature fluids. The expansion rate employed as quantitative measure assess wall stability. analysis reveals that strata adjacent borehole, when drilled fluids, experience thawing yielding, secondary stress concentrations unthawed driving progressive zone. degree deformation diminishes increasing distance from borehole. Consequently, risk under varying conditions, including thickness, depth, strain thresholds, fluid densities. findings suggest fluids are appropriate for thin layers, whereas thicker permafrost, adjustments density required ensure walls due elevated temperatures geostress at greater depths.
Язык: Английский
Процитировано
1Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(6), С. 114293 - 114293
Опубликована: Окт. 9, 2024
Язык: Английский
Процитировано
1