
Computers in Human Behavior Reports, Год журнала: 2024, Номер unknown, С. 100578 - 100578
Опубликована: Дек. 1, 2024
Язык: Английский
Computers in Human Behavior Reports, Год журнала: 2024, Номер unknown, С. 100578 - 100578
Опубликована: Дек. 1, 2024
Язык: Английский
Review of Managerial Science, Год журнала: 2025, Номер unknown
Опубликована: Фев. 28, 2025
Язык: Английский
Процитировано
0Cogent Social Sciences, Год журнала: 2025, Номер 11(1)
Опубликована: Март 4, 2025
Язык: Английский
Процитировано
0Опубликована: Март 17, 2025
ChatGPT represents a groundbreaking AI application that has garnered significant attention since its inception. However, despite promising potential, ethical implications have sparked considerable debate. This study aims to examine the key concerns surrounding governance of by conducting bibliometric analysis and cluster-based content relevant scientific literature. The identifies influential authors, countries, pivotal publications, revealing three primary categories issues associated with ChatGPT: human-related ethics, academic integrity technical literacy, artificial intelligence (AI) technology ethics derived concerns. Additionally, further refines these synthesizing frequently occurring keywords. Building on this framework, provides comprehensive discussion major challenges faced ChatGPT, as well outlining future research priorities. Furthermore, investigates knowledge base underlying ChatGPT's governance, exploring high-citation high-link-strength literature through co-citation analysis, thereby mapping landscape highlighting areas growing scholarly interest. offers valuable insights for policymakers, researchers, practitioners, emphasizing need more stringent policies, guidelines, robust design in development similar technologies.
Язык: Английский
Процитировано
0Tourism Management, Год журнала: 2025, Номер 110, С. 105179 - 105179
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
0Journal of Innovation & Knowledge, Год журнала: 2024, Номер 9(3), С. 100531 - 100531
Опубликована: Июль 1, 2024
This study aims to identify generative AI (GenAI) applications and develop a roadmap for the near, mid, far future. Structural topic modeling (STM) is used discover latent semantic patterns key application areas from text corpus comprising 2,398 patents published between 2017 2023. The identifies six topics of GenAI application, including object detection identification; medical applications; intelligent conversational agents; image generation processing; financial information security cyber-physical systems. Emergent terms are listed each topic, inter-topic correlations explored understand thematic structures summarize relationships among areas. Finally, technology developed identified area provides valuable insights into evolving landscape helps practitioners make strategic business decisions based on roadmap.
Язык: Английский
Процитировано
2Computers in Human Behavior Reports, Год журнала: 2024, Номер unknown, С. 100578 - 100578
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0