
International Journal of Cognitive Computing in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
International Journal of Cognitive Computing in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
The Journal of Supercomputing, Год журнала: 2025, Номер 81(5)
Опубликована: Апрель 15, 2025
Язык: Английский
Процитировано
0Concurrency and Computation Practice and Experience, Год журнала: 2025, Номер 37(12-14)
Опубликована: Май 14, 2025
ABSTRACT In the rapidly evolving networking and communication technology era, emergence of novel edge computing paradigms helps reduce latency improve efficiency. The advancements bring data processing closer to its source, reducing distance. Moreover, integrating Software‐Defined Networking (SDN) in enhances network management by decoupling control plane from plane, enabling more flexible efficient resource allocation distributed environments. However, scheduling, allocation, load balancing are significant obstacles enhancing resources' performance. Besides, help use all resources optimize system's performance effectively. To address these issues, this paper proposed an Average‐Based Resource Allocation Load Balancing (ABRL) algorithm for task balancing, which aims minimize task's completion time enhance utilization. A three‐layer SDN‐based architecture is designed implement that improves simulation studies have been conducted using OpenDaylight (ODL) controller implemented Python. Experimental results demonstrate strategy optimizes makespan, average utilization, level under consideration exhibits better than existing state‐of‐the‐art techniques.
Язык: Английский
Процитировано
0International Journal of Cognitive Computing in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2