Flood susceptibility mapping leveraging open-source remote-sensing data and machine learning approaches in Nam Ngum River Basin (NNRB), Lao PDR DOI Creative Commons
Sackdavong Mangkhaseum, Yogesh Bhattarai, Sunil Duwal

и другие.

Geomatics Natural Hazards and Risk, Год журнала: 2024, Номер 15(1)

Опубликована: Май 28, 2024

Frequent floods caused by monsoons and rainstorms have significantly affected the resilience of human natural ecosystems in Nam Ngum River Basin, Lao PDR. A cost-efficient framework integrating advanced remote sensing machine learning techniques is proposed to address this issue enhancing flood susceptibility understanding informed decision-making. This study utilizes geo-datasets algorithms (Random Forest, Support Vector Machine, Artificial Neural Networks, Long Short-Term Memory) generate comprehensive maps. The results highlight Random Forest's superior performance, achieving highest train test Area Under Curve Receiver Operating Characteristic (AUROC) (1.00 0.993), accuracy (0.957), F1-score (0.962), kappa value (0.914), with lowest mean squared error (0.207) Root Mean Squared Error (0.043). Vulnerability particularly pronounced low-elevation low-slope southern downstream areas (Central part PDR). reveal that 36%–53% basin's total area highly susceptible flooding, emphasizing dire need for coordinated floodplain management strategies. research uses freely accessible data, addresses data scarcity studies, provides valuable insights disaster risk sustainable planning

Язык: Английский

Flood hazards and susceptibility detection for Ganga river, Bihar state, India: Employment of remote sensing and statistical approaches DOI Creative Commons
Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Results in Engineering, Год журнала: 2023, Номер 21, С. 101665 - 101665

Опубликована: Дек. 12, 2023

Climate change and flooding are related issues on the Earth's surface, while numerous lowland areas, especially delta regions, mostly affected by flood hazards. Hence, susceptibility mapping simulation of future effect areas essential for hazard management awareness. The river floodplain Ganga River in Bihar state most due to high annual floods. Floods cause huge economic losses environmental degradation, such as deforestation, riverbank erosion, water quality loss. Thus, vulnerability measurement is a serious concern this area, which involves building proper awareness mitigation strategies achieve sustainable development goals. Remote Sensing (RS) widely applied hydrological issues. statistical approaches, Analytical Hierarchy Process (AHP), Frequency Ratio (FR), Fuzzy-AHP (FAHP) algorithms, were analysis selected plain state. suitable three different approaches 9604.21 km2 9712.48 9598.28 channel not area. flooded maps indicated lands using Google Earth Engine (GEE) years 2977.69 (2020), 10481.63 (2021), 1103.89 (2022), respectively. results current study indicate that area essentially need attention adaptation reduction addition socio-economic variability monsoon regions. Otherwise, floods destroyed cropland, increased food scarcity, caused losses.

Язык: Английский

Процитировано

36

Flood susceptibility mapping using hybrid models optimized with Artificial Bee Colony DOI
Konstantinos Plataridis, Zisis Mallios

Journal of Hydrology, Год журнала: 2023, Номер 624, С. 129961 - 129961

Опубликована: Июль 19, 2023

Язык: Английский

Процитировано

31

Forecasting of compound ocean-fluvial floods using machine learning DOI
Sogol Moradian,

Amir AghaKouchak,

Salem Gharbia

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 364, С. 121295 - 121295

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

15

Implication of novel hybrid machine learning model for flood subsidence susceptibility mapping: A representative case study in Saudi Arabia DOI
Ahmed M. Al‐Areeq, Radhwan A. A. Saleh, Mustafa Ghaleb

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 630, С. 130692 - 130692

Опубликована: Янв. 24, 2024

Язык: Английский

Процитировано

10

Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods DOI
Shruti Sachdeva, Bijendra Kumar

Ecological Informatics, Год журнала: 2021, Номер 67, С. 101498 - 101498

Опубликована: Ноя. 25, 2021

Язык: Английский

Процитировано

46

Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt DOI

Sherif Ahmed Abu El-Magd,

Biswajeet Pradhan, Abdullah Alamri

и другие.

Arabian Journal of Geosciences, Год журнала: 2021, Номер 14(4)

Опубликована: Фев. 1, 2021

Язык: Английский

Процитировано

45

Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms DOI
Rui Liu,

Gulin Li,

Liangshuai Wei

и другие.

Journal of Hydrology, Год журнала: 2022, Номер 610, С. 127977 - 127977

Опубликована: Май 30, 2022

Язык: Английский

Процитировано

39

Spatial Analysis of Flood Hazard Zoning Map Using Novel Hybrid Machine Learning Technique in Assam, India DOI Creative Commons
Chiranjit Singha, Kishore Chandra Swain, Modeste Meliho

и другие.

Remote Sensing, Год журнала: 2022, Номер 14(24), С. 6229 - 6229

Опубликована: Дек. 8, 2022

Twenty-two flood-causative factors were nominated based on morphometric, hydrological, soil permeability, terrain distribution, and anthropogenic inferences further analyzed through the novel hybrid machine learning approach of random forest, support vector machine, gradient boosting, naïve Bayes, decision tree (ML) models. A total 400 flood nonflood locations acted as target variables hazard zoning map. All operative in this study tested using variance inflation factor (VIF) values (<5.0) Boruta feature ranking (<10 ranks) for FHZ maps. The model along with RF GBM had sound maps area. area under receiver operating characteristics (AUROC) curve statistical matrices such accuracy, precision, recall, F1 score, gain lift applied to assess performance. 70%:30% sample ratio training validation standalone models concerning AUROC value showed results all ML models, (97%), SVM (91%), NB (96%), DT (88%), (97%). also suitability RF, GBM, developing

Язык: Английский

Процитировано

38

Mapping of groundwater productivity potential with machine learning algorithms: A case study in the provincial capital of Baluchistan, Pakistan DOI
Umair Rasool, Xinan Yin, Zongxue Xu

и другие.

Chemosphere, Год журнала: 2022, Номер 303, С. 135265 - 135265

Опубликована: Июнь 9, 2022

Язык: Английский

Процитировано

33

Flash Flood Susceptibility Mapping Using GIS-Based AHP Method DOI

Subhasish Choudhury,

Amiya Basak, Sankar Biswas

и другие.

Springer eBooks, Год журнала: 2022, Номер unknown, С. 119 - 142

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

30