Опубликована: Ноя. 28, 2023
Язык: Английский
Опубликована: Ноя. 28, 2023
Язык: Английский
Energy Conversion and Management, Год журнала: 2024, Номер 314, С. 118726 - 118726
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
3Energy Exploration & Exploitation, Год журнала: 2024, Номер 42(6), С. 2241 - 2269
Опубликована: Авг. 27, 2024
In smart cities, sustainable development depends on energy load prediction since it directs utilities in effectively planning, distributing and generating energy. This work presents a novel hybrid deep learning model including components of the Improved-convolutional neural network (CNN), bidirectional long short-term memory (Bi-LSTM), Graph (GNN), Transformer Fusion Layer architectures for precise forecasting. Better feature extraction results from Improved-CNN's dilated convolution residual block accommodation wide receptive fields reduced vanishing gradient problem. By capturing temporal links both directions, Bi-LSTM networks help to better grasp complicated use patterns. improve predictive capacities across linked systems by characterizing spatial relationships between energy-consuming units cities. Emphasizing critical trends guarantee reliable forecasts, transformer models attention methods manage long-term dependencies consumption data. Combining CNN, Bi-LSTM, GNN component predictions synthesizes numerous data representations increase accuracy. With Root Mean Square Error 5.7532 Wh, Absolute Percentage 3.5001%, 6.7532 Wh R 2 0.9701, fared than other ‘Electric Power Consumption’ Kaggle dataset. develops realistic that helps informed decision-making enhances efficiency techniques, promoting forecasting
Язык: Английский
Процитировано
3Energy, Год журнала: 2025, Номер unknown, С. 135214 - 135214
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113339 - 113339
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 28, 2025
Язык: Английский
Процитировано
0Measurement, Год журнала: 2024, Номер 239, С. 115515 - 115515
Опубликована: Авг. 15, 2024
Язык: Английский
Процитировано
2International Journal of Hydrogen Energy, Год журнала: 2024, Номер 90, С. 666 - 679
Опубликована: Окт. 8, 2024
Язык: Английский
Процитировано
2Case Studies in Construction Materials, Год журнала: 2024, Номер 20, С. e03183 - e03183
Опубликована: Апрель 21, 2024
Accurate identification of the backbone curves reinforced concrete (RC) columns is key to engineering design and strengthening renovation. In view problems high cost, long time, low accuracy, large dispersion calculation results discontinuous stiffness changes existing curve methods, such as experimental method, finite element simulation method semi-theoretical semi-empirical it proposed transform problem into a multi-time series prediction problem. By introducing attention mechanism combining with bidirectional short-term memory (BiLSTM), model (BC-ABiLSTM) established considering relationship between front back points curves. Compared models for BiLSTM (BC-BiLSTM), (BC-LSTM), multilayer perceptron (BC-MLP), performance BC-ABiLSTM better, mean absolute error (MAE), percentage (MAPE), root square (RMSE), R2 on testing set are 12.492kN, 10.595%, 20.838kN 0.9924, respectively, which provides new accurate, efficient cost-effective RC column under various cyclic loading levels.
Язык: Английский
Процитировано
1Electrical Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 11, 2024
Язык: Английский
Процитировано
1PLoS ONE, Год журнала: 2024, Номер 19(10), С. e0308002 - e0308002
Опубликована: Окт. 2, 2024
This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts generation rates based on environmental conditions, while the EO optimizes model’s hyper-parameters through training. XAI-based Local Interpretable Model-independent Explanation (LIME) is adapted identify critical factors that influence accuracy of in smart systems. effectiveness proposed X-LSTM-EO evaluated use five metrics; R-squared (R 2 ), root mean square error (RMSE), coefficient variation (COV), absolute (MAE), efficiency (EC). gains values 0.99, 0.46, 0.35, 0.229, 0.95, for R , RMSE, COV, MAE, EC respectively. results this improve performance original conventional LSTM, where improvement rate is; 148%, 21%, 27%, 20%, 134% compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) Gradient Boosting. It was shown worked better than DT LR when were compared. Additionally, PSO employed instead validate outcomes, further demonstrated efficacy optimizer. experimental simulations demonstrate can accurately estimate PV response abrupt changes patterns. Moreover, might assist optimizing operations photovoltaic units. implemented utilizing TensorFlow Keras within Google Collab environment.
Язык: Английский
Процитировано
1