Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 24, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 24, 2024
Язык: Английский
Water Resources Management, Год журнала: 2024, Номер 38(6), С. 2079 - 2099
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
10Water, Год журнала: 2023, Номер 16(1), С. 152 - 152
Опубликована: Дек. 30, 2023
Forecasting of water availability has become increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at various spatial scales successfully investigated daily or seasonal level prediction starting from measured meteorological data (i.e., precipitation temperature) observed levels, by exploiting data-driven approaches. Barely few combine the variables with unsaturated zone monitored soil content, temperature, bulk electric conductivity), and—in most these—the vadose is only single depth. Our approach exploits high spatial-temporal resolution hydrogeological monitoring system Conero Mt. Regional Park (central Italy) predict trends shallow aquifer exploited for drinking purposes. The field equipment consists thermo-pluviometric station, three volumetric conductivity, temperature probes 0.6 m, 0.9 1.7 respectively, piezometer instrumented permanent water-level probe. period started January 2022, were recorded every fifteen minutes more than one hydrologic year, except which was on scale. model “virtual boxes” atmosphere, zone, saturated zone) hydrological characterizing each box integrated into time series forecasting based Prophet Python environment. Each parameter tested its influence prediction. fine-tuned an acceptable (roughly 20% ahead period). quantitative analysis reveals that optimal results are achieved expoiting collected depth m below ground level, Mean Absolute Error (MAE) 0.189, Percentage (MAPE) 0.062, Root Square (RMSE) 0.244, Correlation coefficient 0.923. This study stresses importance calibrating methods exploring conjunction those data, thus emphasizing role as challenging but vital aspect optimizing management.
Язык: Английский
Процитировано
12Water Air & Soil Pollution, Год журнала: 2023, Номер 234(11)
Опубликована: Ноя. 1, 2023
Язык: Английский
Процитировано
10Applied Water Science, Год журнала: 2024, Номер 14(4)
Опубликована: Март 14, 2024
Abstract One of the main challenges regarding prediction groundwater resource changes is climate change phenomenon and its impacts on quantitative variations such resources. Groundwater resources are treated as one strategic any region. Given hydrological parameters, it necessary to evaluate predict future achieve an appropriate plan maintain preserve water In this regard, present study put forward by utilizing Statistical Down-Scaling Model (SDSM) forecast variables (i.e., temperature precipitation) based new Rcp scenarios for greenhouse gas emissions within a period from 2020 2060. The results obtained parameters indicate different values in each emission scenario, so limit, minimum maximum occur Rcp8.5, Rcp2.6 Rcp4.5 scenarios, respectively. Also, model developed GMDH artificial neural network technique. predicts average level way that implementing forecasted SDSM model, time 2060 predicted. verification validation imply proper performance reasonable accuracy predicating variables. findings derived paper compared years prior period, Sahneh Plain has dramatically dropped their lowest state 2046 2056. can be used managers decision makers layout evaluating effects Plain.
Язык: Английский
Процитировано
4IEEE Access, Год журнала: 2024, Номер 12, С. 71901 - 71918
Опубликована: Янв. 1, 2024
Rich natural resources such as fertilizers, environment, groundwater, rivers, and land are abundant in many countries. Agriculture is the primary source of income for people living different There have not been shortages like river water recent decades. But, lack knowledge on how to use those valuable main reason resource wastage. The amount applied crop fields a variety soil, weather, growth stages can be managed optimized using smart farming. field's soil moisture measured sensors positioned at various observation points, which will show much has retained. Unfortunately, farming system capable receive data provided by irrigation management due issues with connectivity or sensor failure. Innovative agricultural approaches facilitated Internet Things (IoT) technologies. These IoT nodes encountered energy limitations challenging routing techniques result their low capacity. Therefore, it imperative resolve implementing an effective IoT-based area. major steps developed model collection prediction. Initially, essential image attained from benchmark resources. Next, collected images level prediction phase. This phase facilitates farmers maximize yields minimize production cost. Here, performed Adaptive Hybrid (1D-2D) Convolution-based ShuffleNetV2 (AHC-ShuffleNetV2). Moreover, parameters suggested AHC-ShuffleNetV2 Fitness-based Piranha Foraging Optimization Algorithm (FPFOA). increases performance rates proposed model. Later, several experimental analyses executed over classical display effectualness rate. When considering sigmoid activation function, implemented framework's RMSE was minimized 73.15% POA-ShuffleNetV2, 72.36% RSA-ShuffleNetV2, 78.94% MRS-ShuffleNetV2, 79.47% PFOA-ShuffleNetV2 respectively. Hence, revealed that designed error also achieved higher efficacy than other baseline techniques.
Язык: Английский
Процитировано
3Earth Science Informatics, Год журнала: 2025, Номер 18(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Earth Science Informatics, Год журнала: 2025, Номер 18(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Фев. 7, 2025
Язык: Английский
Процитировано
0Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Transactions of Indian National Academy of Engineering, Год журнала: 2025, Номер unknown
Опубликована: Май 13, 2025
Язык: Английский
Процитировано
0