Study on an Optimization Algorithm for Unmanned Aerial Vehicle Surveying and Mapping Paths along the Coast DOI

Fu Luo,

Yan Wang

Опубликована: Ноя. 17, 2023

Topographic surveying and mapping is the basic operation of waterway shoreline, which plays an important role in collection surface features, observation renovation buildings, accumulation evolution analysis data for maintenance observation. At present, technology drones very mature, but there are still bottlenecks flight time, power consumption, avoidance flying obstacles, affect results shoreline. To extend time this paper proposes a dynamic programming algorithm. Firstly, based on operations shoals, reefs, height differences, siltation sections Yangtze River waterway, planning algorithm conducted routes unmanned aerial vehicles. Divide path into three segments: start, process, end. Refine each segment four items, construct Secondly, analyze integrate term to eliminate unsolvable eigenvalues, obtain optimal effectiveness verification. The indicate that dynamically analyzes path, reduces direction changes, improves vehicles, shortens length overall consumption by adjusting threshold process.

Язык: Английский

Neural networks-based adaptive fault-tolerant control for stochastic nonlinear systems with unknown backlash-like hysteresis and actuator faults DOI
Mohamed Kharrat

Journal of Applied Mathematics and Computing, Год журнала: 2024, Номер 70(3), С. 1995 - 2018

Опубликована: Март 20, 2024

Язык: Английский

Процитировано

7

Linear quadratic stochastic optimal control with state- and control-dependent noises: A deterministic data approach DOI
Heng Zhang, Zhiguo Yan

Neurocomputing, Год журнала: 2024, Номер 575, С. 127269 - 127269

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

4

Partially observed linear quadratic stochastic optimal control problem in infinite horizon: A data-driven approach DOI
Xun Li, Guangchen Wang, Jie Xiong

и другие.

Systems & Control Letters, Год журнала: 2025, Номер 198, С. 106050 - 106050

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Inverse reinforcement learning by expert imitation for the stochastic linear-quadratic optimal control problem DOI
Zhongshi Sun, Guangyan Jia

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129758 - 129758

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Two system transformation data-driven algorithms for linear quadratic mean-field games DOI
Xun Li, Guangchen Wang, Yu Wang

и другие.

European Journal of Control, Год журнала: 2025, Номер unknown, С. 101226 - 101226

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Finite-horizon and infinite-horizon linear quadratic optimal control problems: A data-driven Euler scheme DOI
Guangchen Wang, Heng Zhang

Journal of the Franklin Institute, Год журнала: 2024, Номер 361(13), С. 107054 - 107054

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

2

Research and Application of Optimal Value Calculation Method for Mixed Data Blocks based on Dynamic Programming Algorithm DOI
Feng Chen, Bin Chen,

Xinye Bao

и другие.

Опубликована: Фев. 23, 2024

With the rapid development of computer technology, people's demand for information processing continues to increase. In terms howto better store and manage data with modern computing methods, scholars have begun focus on research area limited scalable, high-speed efficient storage. Dynamic programming algorithm, as an optimization problem solving tool based characteristics continuous time series analysis, has attracted widespread attention in this field. This article first introduces dynamic theory related concepts, then tries determine optimal value connection between real-time indicators queried from static database provided literature retrieval results obtained historical queries. tested performance algorithm. The test show that algorithm good data. Its best calculation transmission is within 3 seconds, efficiency range 80% 90%. integrity index above 0.89, highest 0.97. five are very close 1. algorithm's complete significant. Although provides in-depth study computational methods hybrid blocks, there still areas improvement.

Язык: Английский

Процитировано

0

System transformation and model-free value iteration algorithms for continuous-time linear quadratic stochastic optimal control problems DOI
Guangchen Wang, Heng Zhang

International Journal of Systems Science, Год журнала: 2024, Номер unknown, С. 1 - 10

Опубликована: Авг. 18, 2024

In this paper, we investigate a continuous-time linear quadratic stochastic optimal control (LQSOC) problem in an infinite horizon, where diffusion and drift terms of the corresponding system depend on both state variables. light theory, LQSOC is reduced to solving generalised algebraic Riccati equation (GARE). With help existing model-based value iteration (VI) algorithm, propose two data-driven VI algorithms solve GARE. The first one relies transforming into deterministic then by data system. Consequently, algorithm does not need information coefficients has lower complexity. second directly uses generated system, thus it circumvents requirement all coefficients. We also provide convergence proofs these validate through simulation examples.

Язык: Английский

Процитировано

0

Optimal Control of Discrete-Time Stochastic Systems with Wiener and Poisson Noises: A Model-Free Reinforcement Learning Approach DOI
Zhiguo Yan,

Tingkun Sun,

Guolin Hu

и другие.

2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Год журнала: 2024, Номер unknown, С. 1178 - 1183

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

0

Optimal Control of Stochastic Systems with Wiener and Poisson Noise based on Data-Driven Approach DOI
Zhiguo Yan,

Guocui Chen,

Guolin Hu

и другие.

2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Год журнала: 2024, Номер unknown, С. 1166 - 1171

Опубликована: Май 17, 2024

Язык: Английский

Процитировано

0