Advancements in the application of large language models in urban studies: A systematic review DOI

Junhao Xia,

Yao Tong, Ying Long

и другие.

Cities, Год журнала: 2025, Номер 165, С. 106142 - 106142

Опубликована: Июнь 7, 2025

Язык: Английский

Active multi-mode data analysis to improve fault diagnosis in AHUs DOI
Guanjing Lin, John M. House, Yimin Chen

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115621 - 115621

Опубликована: Март 1, 2025

Процитировано

0

Public sentiment analysis of data center energy consumption using social media data and large language models DOI
Hongyu Wang, Weiqi Hua, Jinqing Peng

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115802 - 115802

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Exploring Gen-AI applications in building research and industry: A review DOI
Honglin Wan, Jian Zhang, Yan Chen

и другие.

Building Simulation, Год журнала: 2025, Номер unknown

Опубликована: Май 2, 2025

Язык: Английский

Процитировано

0

Physics-informed machine learning for building performance simulation-A review of a nascent field DOI Creative Commons
Zixin Jiang, Xuezheng Wang, Han Li

и другие.

Advances in Applied Energy, Год журнала: 2025, Номер unknown, С. 100223 - 100223

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Application of Large Language Models in the AECO Industry: Core Technologies, Application Scenarios, and Research Challenges DOI Creative Commons

Guozong Zhang,

Charles Lu,

Qianmai Luo

и другие.

Buildings, Год журнала: 2025, Номер 15(11), С. 1944 - 1944

Опубликована: Июнь 4, 2025

As projects in the architecture, engineering, construction, and operations (AECO) industry grow complexity scale, there is an urgent need for more effective information management intelligent decision-making. This study investigates potential of large language models (LLMs) to address these challenges by systematically reviewing their core technologies, application scenarios, integration approaches AECO. Using a literature-based review methodology, this paper examines how LLMs—built on Transformer architecture powered deep learning natural processing—can process complex unstructured data support wide range tasks, including contract analysis, construction scheduling, risk assessment, maintenance. finds that while LLMs offer substantial promise enhancing productivity automation AECO workflows, several obstacles remain, such as quality issues, computational demands, limited adaptability, barriers, ethical concerns. The concludes future research should focus improving model efficiency, enabling multimodal fusion, compatibility with existing tools realize full digital transformation sector.

Язык: Английский

Процитировано

0

Advancements in the application of large language models in urban studies: A systematic review DOI

Junhao Xia,

Yao Tong, Ying Long

и другие.

Cities, Год журнала: 2025, Номер 165, С. 106142 - 106142

Опубликована: Июнь 7, 2025

Язык: Английский

Процитировано

0