Improved Manta Ray Foraging Optimization for Parameters Identification of Magnetorheological Dampers DOI Creative Commons
Yingying Liao, Weiguo Zhao, Liying Wang

и другие.

Mathematics, Год журнала: 2021, Номер 9(18), С. 2230 - 2230

Опубликована: Сен. 10, 2021

Magnetorheological (MR) dampers play a crucial role in various engineering systems, and how to identify the control parameters of MR damper models without any prior knowledge has become burning problem. In this study, more accurately, an improved manta ray foraging optimization (IMRFO) is proposed. The new algorithm designs searching factor according weak exploration ability MRFO, which can effectively increase global algorithm. To prevent premature convergence local optima, adaptive weight coefficient based on Levy flight designed. Moreover, by introducing Morlet wavelet mutation strategy algorithm, space adaptively adjusted enhance step out stagnation rate. performance IMRFO evaluated two sets benchmark functions results confirm competitiveness proposed Additionally, applied identifying dampers, simulation reveal effectiveness practicality applications.

Язык: Английский

Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts DOI
Yutao Yang, Huiling Chen, Ali Asghar Heidari

и другие.

Expert Systems with Applications, Год журнала: 2021, Номер 177, С. 114864 - 114864

Опубликована: Март 11, 2021

Язык: Английский

Процитировано

875

A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems DOI
Eneko Osaba, Esther Villar-Rodríguez, Javier Del Ser

и другие.

Swarm and Evolutionary Computation, Год журнала: 2021, Номер 64, С. 100888 - 100888

Опубликована: Апрель 28, 2021

Язык: Английский

Процитировано

257

Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications DOI Creative Commons
J. M. Górriz, Javier Ramı́rez, Andrés Ortíz

и другие.

Neurocomputing, Год журнала: 2020, Номер 410, С. 237 - 270

Опубликована: Июнь 2, 2020

Язык: Английский

Процитировано

239

A survey on data‐efficient algorithms in big data era DOI Creative Commons
Amina Adadi

Journal Of Big Data, Год журнала: 2021, Номер 8(1)

Опубликована: Янв. 26, 2021

Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring involves a process that is expensive or time-consuming. This has triggered serious debate both the industrial and academic communities calling for more data-efficient models harness power of artificial learners while achieving good results with less training particular human supervision. In light this debate, work investigates issue algorithms’ hungriness. First, it surveys from different perspectives. Then, presents comprehensive review existing methods systematizes them into four categories. Specifically, survey covers solution strategies handle data-efficiency by (i) using non-supervised algorithms are, nature, data-efficient, (ii) creating artificially data, (iii) transferring knowledge rich-data poor-data domains, (iv) altering data-hungry reduce their dependency upon amount samples, way they can perform well small samples regime. Each strategy extensively reviewed discussed. addition, emphasis put on how interplay each other order motivate exploration robust algorithms. Finally, delineates limitations, discusses research challenges, suggests future opportunities advance machine learning.

Язык: Английский

Процитировано

222

A prescription of methodological guidelines for comparing bio-inspired optimization algorithms DOI Creative Commons
Antonio LaTorre, Daniel Molina, Eneko Osaba

и другие.

Swarm and Evolutionary Computation, Год журнала: 2021, Номер 67, С. 100973 - 100973

Опубликована: Авг. 20, 2021

Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing successful proposal of new algorithm not easy task. Given the maturity this field, proposing technique innovative elements no longer enough. Apart from novelty, results reported by authors should be proven to achieve significant advance over previous outcomes state art. Unfortunately, all proposals deal requirement properly. Some them fail select appropriate benchmarks or reference compare with. other cases, validation process carried out defined in principled way (or even done at all). Consequently, significance presented studies cannot guaranteed. work we review several recommendations literature propose methodological guidelines prepare proposal, taking these issues into account. We expect useful only for authors, but also reviewers editors along their assessment contributions field.

Язык: Английский

Процитировано

128

Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature DOI
Absalom E. Ezugwu, Amit K. Shukla, Moyinoluwa B. Agbaje

и другие.

Neural Computing and Applications, Год журнала: 2020, Номер 33(11), С. 6247 - 6306

Опубликована: Окт. 10, 2020

Язык: Английский

Процитировано

123

Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development DOI Creative Commons

Fernando Peres,

Mauro Castelli

Applied Sciences, Год журнала: 2021, Номер 11(14), С. 6449 - 6449

Опубликована: Июль 13, 2021

In the past few decades, metaheuristics have demonstrated their suitability in addressing complex problems over different domains. This success drives scientific community towards definition of new and better-performing heuristics results an increased interest this research field. Nevertheless, studies been focused on developing algorithms without providing consolidation existing knowledge. Furthermore, absence rigor formalism to classify, design, develop combinatorial optimization represents a challenge field’s progress. study discusses main concepts challenges area proposes code metaheuristics. We believe these contributions may support progress field increase maturity as problem solvers analogous other machine learning algorithms.

Язык: Английский

Процитировано

82

Binary Chimp Optimization Algorithm (BChOA): a New Binary Meta-heuristic for Solving Optimization Problems DOI
Jianhao Wang, Mohammad Khishe, Mehrdad Kaveh

и другие.

Cognitive Computation, Год журнала: 2021, Номер 13(5), С. 1297 - 1316

Опубликована: Сен. 1, 2021

Язык: Английский

Процитировано

80

A combination forecasting model of wind speed based on decomposition DOI Creative Commons
Zhongda Tian, Hao Li, Feihong Li

и другие.

Energy Reports, Год журнала: 2021, Номер 7, С. 1217 - 1233

Опубликована: Фев. 21, 2021

Due to the intermittent, fluctuating and random characteristics of wind system, output power will become unstable with change wind, which brings severe challenges safe stable operation system. An effective way solve this problem is accurately forecast speed. This paper presents a novel speed combination forecasting model based on decomposition. The innovation as follows. (a) In view speed, variational mode decomposition algorithm introduced decompose historical data obtain series components different frequencies. (b) Echo state network good ability selected each component. (c) To that performance echo greatly affected by parameters reservoir, an improved whale optimization proposed optimize these parameters. optimized improves effect. (d) final results are obtained adding values (e) developed verified using two actual collected sets ultra-short-term short-term Compared some state-of-the-art models, comparison result curve between value error distribution, histogram indicators, related statistical Taylor diagram show has higher prediction accuracy able reflect laws correctly.

Язык: Английский

Процитировано

78

Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems DOI
Eşref Boğar, Selami Beyhan

Applied Soft Computing, Год журнала: 2020, Номер 95, С. 106503 - 106503

Опубликована: Июнь 27, 2020

Язык: Английский

Процитировано

71