Arabian Journal of Geosciences, Год журнала: 2022, Номер 15(14)
Опубликована: Июль 1, 2022
Язык: Английский
Arabian Journal of Geosciences, Год журнала: 2022, Номер 15(14)
Опубликована: Июль 1, 2022
Язык: Английский
Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655
Опубликована: Май 5, 2024
Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.
Язык: Английский
Процитировано
22Bulletin of Engineering Geology and the Environment, Год журнала: 2023, Номер 82(5)
Опубликована: Апрель 26, 2023
Язык: Английский
Процитировано
28CATENA, Год журнала: 2022, Номер 222, С. 106799 - 106799
Опубликована: Ноя. 30, 2022
Язык: Английский
Процитировано
32Journal of Mountain Science, Год журнала: 2023, Номер 20(1), С. 31 - 48
Опубликована: Янв. 1, 2023
Язык: Английский
Процитировано
22Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Янв. 18, 2024
Abstract Landslides, recognized as a significant global natural disaster, necessitate an exploration of the impact various resolution types in sampling strategies on Landslide Susceptibility Mapping (LSM) results. This study focuses segment from Zigui to Badong within Three Gorges Reservoir Area, utilizing two types: and spatial resolution, The Support Vector Machine (SVM) is employed obtain LSM results, which are then analyzed using Receiver Operating Characteristic (ROC) curve, specific category accuracy statistical methods. Artificial Neural Network (ANN) Convolutional (CNN) were used verify reliability Additionally, five common machine learning models, including Logistic Regression (LR), conduct experiments four resolutions (10 m,30 m,50 m 70 m) further investigate effect These evaluated comprehensive quantitative method. results reveal that increasing improves prediction accuracy, while produces contrary effect. Furthermore, more pronounced than resolution. Finally, Fanjiaping landslide Huangtupo selected references for comparative analysis, with aligning engineering reality.
Язык: Английский
Процитировано
8Journal of Contaminant Hydrology, Год журнала: 2024, Номер 261, С. 104300 - 104300
Опубликована: Янв. 18, 2024
Язык: Английский
Процитировано
8Bulletin of Engineering Geology and the Environment, Год журнала: 2024, Номер 83(6)
Опубликована: Май 13, 2024
Язык: Английский
Процитировано
8International Journal of Digital Earth, Год журнала: 2023, Номер 16(1), С. 408 - 429
Опубликована: Фев. 27, 2023
The selection of discretization criteria and interval numbers landslide-related environmental factors generally fails to quantitatively determine or filter, resulting in uncertainties limitations the performance machine learning (ML) methods for landslide susceptibility mapping (LSM). aim this study is propose a robust criterion (RDC) quantify explore uncertainty subjectivity different methods. RDC consists two steps: raw classification dataset generation optimal extraction. To evaluate robustness proposed method, Lushan County Sichuan Province China was chosen as area generate LSM based on three datasets (optimal dataset, original with continuous values, statistical dataset) using popular ML methods, namely, convolution neural network, random forest, logistic regression. results show that areas under receiver operating characteristic curve (AUCs) abovementioned models are 0.963, 0.961, 0.930 which higher than those (0.938, 0.947, 0.900) (0.948, 0.954, 0.897). In conclusion, method can extract more representative features from outperform other conventional
Язык: Английский
Процитировано
15Geocarto International, Год журнала: 2022, Номер 38(1), С. 1 - 29
Опубликована: Авг. 19, 2022
Formulae display:?Mathematical formulae have been encoded as MathML and are displayed in this HTML version using MathJax order to improve their display. Uncheck the box turn off. This feature requires Javascript. Click on a formula zoom.
Язык: Английский
Процитировано
23Environmental Earth Sciences, Год журнала: 2022, Номер 81(3)
Опубликована: Янв. 29, 2022
Язык: Английский
Процитировано
22