Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Water Practice & Technology, Год журнала: 2024, Номер 19(6), С. 2442 - 2459
Опубликована: Июнь 1, 2024
ABSTRACT Measurement inaccuracies and the absence of precise parameters value in conceptual analytical models pose challenges simulating rainfall–runoff modeling (RRM). Accurate prediction water resources, especially scarcity conditions, plays a distinctive pivotal role decision-making within resource management. The significance machine learning (MLMs) has become pronounced addressing these issues. In this context, forthcoming research endeavors to model RRM utilizing four MLMs: Support Vector Machine, Gene Expression Programming (GEP), Multilayer Perceptron, Multivariate Adaptive Regression Splines (MARS). simulation was conducted Malwathu Oya watershed, employing dataset comprising 4,765 daily observations spanning from July 18, 2005, September 30, 2018, gathered rainfall stations, Kappachichiya hydrometric station. Of all input combinations, incorporating Qt−1, Qt−2, R̄t identified as optimal configuration among considered alternatives. models' performance assessed through root mean square error (RMSE), average (MAE), coefficient determination (R2), developed discrepancy ratio (DDR). GEP emerged superior choice, with corresponding index values (RMSE, MAE, R2, DDRmax) (43.028, 9.991, 0.909, 0.736) during training process (40.561, 10.565, 0.832, 1.038) testing process.
Язык: Английский
Процитировано
12Transportation Geotechnics, Год журнала: 2025, Номер unknown, С. 101537 - 101537
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Results in Engineering, Год журнала: 2024, Номер 21, С. 101820 - 101820
Опубликована: Янв. 26, 2024
The present research aims to forecast the safeguarding efficacy of a mesh collar, hole diameter d, in developing scour depth around cylindrical bridge pier D under steady and clean water conditions utilizing three machine learning models (MLMs), namely Support Vector Machine (SVM), Gene Expression Programming (GEP), Multilayer Perceptron (MLP). A total 240 laboratory measured data were employed this study. experimental setup involved installation four distinct collars, configured shapes circle, square, rectangle, an d triangle by shape factor (SF) 1.78, 1, 2.3, 1.69, respectively. mean size non-cohesive sand particles was selected with particle 1.3 mm. Employing dimensional analysis, dimensionless parameters, SF, d/D, Uc/U identified as independent variables adopting for input MLMs. performance assessment metrics Root Mean Squared Error (RMSE), Absolute (MAE), coefficient determination (R2), Developed Discrepancy Ratio (DDR). simulation results demonstrated that MLMs exhibit high degree accuracy predicting relative (RSD) influenced presence collars. Among aforementioned models, GEP model its superiority corresponding values (RMSE, MAE, R2, DDRmax) indices (0.11342, 0.08642, 0.85058, 2.54) (0.0787, 0.0624, 0.8959, 3.66) during training testing phases, Finally, equation extracted predict RSD using model.
Язык: Английский
Процитировано
5Hydrological Sciences Journal, Год журнала: 2024, Номер unknown, С. 1 - 22
Опубликована: Сен. 4, 2024
Язык: Английский
Процитировано
4Applied Water Science, Год журнала: 2024, Номер 14(6)
Опубликована: Май 5, 2024
Abstract Scour depth downstream of weirs is considered one the most important hydraulic problems, which greatly influences stability weirs. Recently, artificial intelligence (AI) methods have become increasingly popular in modeling variables, especially scour depth, because they can capture nonlinear relationships between input variables and their associated objectives. Despite importance, these models problems with hyperparameter tuning due to structures, so algorithms must be used tune hyperparameters. Moreover, are usually tuned by using trial-and-error method select hyperparameters such as number hidden nodes, transfer function, learning rate, this case, main problem overfitting during training phase. To solve high-order response surface (HORSM), an improved version (RSM), alternative approach for first time study predict depth. The HORSM model based on polynomial functions (from two six) compared neural network (ANN). findings indicate that fifth order function yields precise predictions, a higher coefficient determination ( R 2 ) 0.912 Willmott Index WI 0.972 values obtained ANN = 0.886 0.927). accuracy predictions represented reduction mean square error up 44.17 29.01% classical RSM ANN, respectively. suggested established excellent correlation experimental values.
Язык: Английский
Процитировано
3Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133257 - 133257
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 156, С. 111318 - 111318
Опубликована: Июнь 2, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2024, Номер 23, С. 102759 - 102759
Опубликована: Авг. 23, 2024
Язык: Английский
Процитировано
2Results in Engineering, Год журнала: 2024, Номер unknown, С. 103492 - 103492
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
2