Journal of Civil Structural Health Monitoring, Год журнала: 2025, Номер unknown
Опубликована: Май 22, 2025
Язык: Английский
Journal of Civil Structural Health Monitoring, Год журнала: 2025, Номер unknown
Опубликована: Май 22, 2025
Язык: Английский
Structural Health Monitoring, Год журнала: 2025, Номер unknown
Опубликована: Янв. 21, 2025
Structural health monitoring is vital for the early detection of damage, enabling effective life cycle management structures. Detecting compound where multiple types damage occur simultaneously in different sections a structure, particularly challenging, especially when some damages are subtle or minor. Existing methods typically treat as distinct category, separate from single types. This paper introduces novel approach to based solely on vibration responses, combining wavelet transform with deep convolutional neural network interference (MIDCNN). In this approach, MIDCNN trained using time-frequency data healthy and states, intentionally excluding training phase. During testing, model accurately distinguishes between healthy, untrained states output probabilities meet predefined conditions. The method validated laboratory-scale offshore jacket structure. results demonstrate method’s ability extract relevant features classify structural including single, damage.
Язык: Английский
Процитировано
1International Journal of Rock Mechanics and Mining Sciences, Год журнала: 2025, Номер 190, С. 106112 - 106112
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0Journal of Civil Structural Health Monitoring, Год журнала: 2025, Номер unknown
Опубликована: Май 22, 2025
Язык: Английский
Процитировано
0