Analysis of Water Quality Data Using Statistical and Artificial Neural Network Techniques DOI
Joydeep Dutta, Sudip Basack, Ghritartha Goswami

и другие.

Water Air & Soil Pollution, Год журнала: 2024, Номер 235(10)

Опубликована: Авг. 31, 2024

Язык: Английский

Water Quality Assessment and Forecasting Along the Liffey and Andarax Rivers by Artificial Neural Network Techniques Toward Sustainable Water Resources Management DOI Open Access
Eyad Abushandi

Water, Год журнала: 2025, Номер 17(3), С. 453 - 453

Опубликована: Фев. 6, 2025

This research evaluates water quality in two contrasting hydro-climatic regions: the River Liffey Ireland and Andarax Spain. It utilizes an Artificial Neural Network (ANN) to simulate potential changes key water-quality parameters based on field measurements. The ANN models showed strong predictive efficiency performance, achieving R2 values of 0.89 for dissolved oxygen (DO), 0.98 electrical conductivity (EC), 0.87 pH, 0.95 total solids (TDS), 0.96 turbidity. root mean-square-error (RMSE) important were DO (1.25 mg/L), EC (48.06 µS/cm), turbidity (8.9 FNU). able capture complex nonlinear relationships under different environmental conditions. results that levels will decline by up 20% over next decade due rising nutrient pollution, while TDS are expected rise approximately 15% during same period as a result ongoing agricultural runoff. study also simulated future hypothetical scenarios applying model four “what-if” situations. Overall, underscores significance machine learning understanding intricate dynamics.

Язык: Английский

Процитировано

2

Evaluation of a New Approach in Water Quality Assessments Using the Modified VIKOR Method DOI
Ahmet Ahıskalı, Tamer Akkan, Eren Baş

и другие.

Environmental Modeling & Assessment, Год журнала: 2025, Номер unknown

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

1

Water Pollution and Water Quality Assessment and Application of Criterion Impact Loss (CILOS), Geographical Information System (GIS), Artificial Neural Network (ANN) and Decision-Learning Technique in River Water Quality Management: An Experiment on the Mahanadi Catchment, Odisha, India DOI Creative Commons
Abhijeet Das

Desalination and Water Treatment, Год журнала: 2024, Номер unknown, С. 100969 - 100969

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4

Modeling of diatom indices (Bdı, Tdı and Gdı) based on the physico-chemical structure of the river ecosystem with machine learning and artificial intelligence methods; a comparative example DOI Creative Commons
Bengü TEMİZEL, Elif Neyran Soylu

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Май 7, 2025

Язык: Английский

Процитировано

0

A new single multiplicative neuron model artificial neural network based on black hole optimization algorithm: forecasting the amounts of clean water given to metropolis DOI
Hakan Işık, Eren Baş, Erol Eğrioğlu

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(11), С. 4259 - 4274

Опубликована: Авг. 29, 2024

Язык: Английский

Процитировано

2

Unveiling Agricultural Soil Runoff: Remote Sensing and Ensemble Deep Learning Models to Evaluate Impact of Climate on Water Quality and Human Health DOI

P. Anandan,

Asha Sundaram

Remote Sensing in Earth Systems Sciences, Год журнала: 2024, Номер 7(4), С. 722 - 737

Опубликована: Окт. 30, 2024

Язык: Английский

Процитировано

1

Analysis of Water Quality Data Using Statistical and Artificial Neural Network Techniques DOI
Joydeep Dutta, Sudip Basack, Ghritartha Goswami

и другие.

Water Air & Soil Pollution, Год журнала: 2024, Номер 235(10)

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

0