Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 58, С. 102201 - 102201
Опубликована: Янв. 25, 2025
Язык: Английский
Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 58, С. 102201 - 102201
Опубликована: Янв. 25, 2025
Язык: Английский
Journal of Hydrology, Год журнала: 2023, Номер 624, С. 129945 - 129945
Опубликована: Июль 18, 2023
Язык: Английский
Процитировано
74Geoscientific model development, Год журнала: 2023, Номер 16(9), С. 2391 - 2413
Опубликована: Май 5, 2023
Abstract. The local inertial two-dimensional (2D) flow model on LISFLOOD-FP, the so-called ACCeleration (ACC) uniform grid solver, has been widely used to support fast, computationally efficient fluvial/pluvial flood simulations. This paper describes new releases, LISFLOOD-FP 8.1, for parallelised simulations graphical processing units (GPUs) boost efficiency of existing ACC solver central (CPUs) and enhance it further by enabling a non-uniform version. generates its using multiresolution analysis (MRA) multiwavelets (MWs) Galerkin polynomial projection digital elevation (DEM). sensibly coarsens resolutions where topographic details are below an error threshold ε allows classes land use be properly adapted. Both generator adapted implemented in GPU codebase, indexing Z-order curves alongside parallel tree traversal approach. performance solvers is assessed five case studies, accuracy latter explored ε=10-4 10−3 terms how close can reproduce prediction former. On GPU, found 2–28 times faster than CPU predecessor with increased number elements grid, increase speed up 320 reduction grid's decreased variability resolution. therefore, inundation modelling performed at both urban catchment scales. It openly available under GPL v3 license, additional documentation https://www.seamlesswave.com/LISFLOOD8.0 (last access: 12 March 2023).
Язык: Английский
Процитировано
27The Science of The Total Environment, Год журнала: 2023, Номер 911, С. 168799 - 168799
Опубликована: Ноя. 22, 2023
Язык: Английский
Процитировано
20International Journal of Disaster Risk Science, Год журнала: 2023, Номер 14(2), С. 253 - 268
Опубликована: Апрель 1, 2023
Abstract Fast and accurate prediction of urban flood is considerable practical importance to mitigate the effects frequent disasters in advance. To improve efficiency accuracy, we proposed a framework for fast mapping flood: coupled model based on physical mechanisms was first constructed, rainfall-inundation database generated, hybrid finally using multi-objective random forest (MORF) method. The results show that had good reliability modelling flood, 48 scenarios were then specified. MORF also demonstrated performance predicting inundated depth under observed scenario rainfall events. spatial depths predicted by close those model, with differences typically less than 0.1 m an average correlation coefficient reaching 0.951. however, achieved computational speed 200 times faster model. overall better k-nearest neighbor Our research provides novel approach rapid early warning.
Язык: Английский
Процитировано
17Journal of Hydrology, Год журнала: 2024, Номер 630, С. 130724 - 130724
Опубликована: Янв. 24, 2024
Язык: Английский
Процитировано
8Journal of Hydroinformatics, Год журнала: 2024, Номер 26(6), С. 1409 - 1424
Опубликована: Май 28, 2024
ABSTRACT Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency prediction, addressing efficiency constraints physical models. However, spatial structure rainfall, which has profound influence on flooding, is often overlooked many investigations. In this study, we introduce novel model known as CRU-Net equipped with an attention mechanism predict inundation depths terrains based spatiotemporal rainfall patterns. This method utilizes eight topographic parameters related height waterlogging, combined data inputs model. Comparative evaluations between developed two other models, U-Net ResU-Net, reveal that adeptly interprets traits accurately estimates depths, emphasizing flood-vulnerable regions. The demonstrates exceptional accuracy, evidenced by root mean square error 0.054 m Nash–Sutcliffe 0.975. also predicts over 80% locations exceeding 0.3 m. Remarkably, delivers predictions 3 million grids 2.9 s, showcasing efficiency.
Язык: Английский
Процитировано
8Applied Ocean Research, Год журнала: 2024, Номер 145, С. 103934 - 103934
Опубликована: Фев. 19, 2024
Язык: Английский
Процитировано
6The Science of The Total Environment, Год журнала: 2024, Номер 947, С. 174290 - 174290
Опубликована: Июль 3, 2024
Язык: Английский
Процитировано
6Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132228 - 132228
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
6Ecological Informatics, Год журнала: 2024, Номер 84, С. 102904 - 102904
Опубликована: Ноя. 17, 2024
Язык: Английский
Процитировано
6