Опубликована: Июль 27, 2024
Язык: Английский
Опубликована: Июль 27, 2024
Язык: Английский
Composites Part B Engineering, Год журнала: 2024, Номер 283, С. 111645 - 111645
Опубликована: Июль 2, 2024
Язык: Английский
Процитировано
24Discover Materials, Год журнала: 2025, Номер 5(1)
Опубликована: Янв. 11, 2025
Abstract The increasing demand for advanced materials capable of withstanding extreme loading conditions, such as those encountered during impact or blast events, underscores the need innovative approaches in material processing. This study focuses on leveraging machine learning (ML) to enhance predictive accuracy continuous extrusion CP-Titanium Grade 2, a vital structural resilience critical applications. Specifically, an Artificial Neural Network (ANN) model optimized using Stochastic Gradient Descent (SGD) was introduced forecast power requirements with high precision. analysis utilized published dataset that comprises theoretical, numerical, and experimental calculations robust foundation validation comparison. A visualization highlighted influence process parameters, feedstock temperature wheel velocity, performance align thematic focus resilient design. ANN-SGD achieved RMSE 0.9954 CVRMSE 11.53% which demonstrated significant improvements prediction compared traditional approaches. By achieving superior alignment results, validated its efficacy reliable efficient tool understanding optimizing complex manufacturing processes. research emphasizes potential ML revolutionize processing conditions contribute broader goals sustainable manufacturing.
Язык: Английский
Процитировано
3Nano Energy, Год журнала: 2024, Номер 128, С. 109876 - 109876
Опубликована: Июнь 10, 2024
Язык: Английский
Процитировано
10Progress in Additive Manufacturing, Год журнала: 2025, Номер unknown
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
2Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials, Год журнала: 2025, Номер 166, С. 106949 - 106949
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
1Applied Materials Today, Год журнала: 2025, Номер 44, С. 102702 - 102702
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
1Materials Today Sustainability, Год журнала: 2024, Номер 27, С. 100847 - 100847
Опубликована: Май 20, 2024
Язык: Английский
Процитировано
5The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(3-4), С. 1051 - 1087
Опубликована: Окт. 5, 2024
Язык: Английский
Процитировано
4Lecture notes in mechanical engineering, Год журнала: 2025, Номер unknown, С. 371 - 380
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(9), С. 4179 - 4179
Опубликована: Май 6, 2025
In discussions on environmental policies, eco-efficiency is often underlined. Eco-efficiency defined as delivering products and services with competitive value while simultaneously reducing the ecological impacts meeting human needs. highly industrial environments, improvements in production processes are crucial for maintaining a strong differentiated position ability. Additionally, rationalizing energy consumption optimizing use of natural resources essential sustainability. This work presents an empirical study Portuguese company focused minimizing scrap extrusion processes. common challenge worldwide, significant economic implications. A literature review revealed relationships between key process parameters, including temperature, time, speed, pressure, geometry. The main objective this to model aluminum simple replicable way, avoiding complex models such nonlinear optimization or finite element methods, view toward potential machine learning applications reduction. Thus, multiple linear regression enable identification most influential variables involved process. results identify that impact generation, aligning findings from literature. dataset, geometry-related factors parameters notable rates.
Язык: Английский
Процитировано
0