Prediction of Tribological Performance of Ti-3Al-2.5 V-xWC Composite using Machine Learning Models DOI

T. Ramkumar,

V. Sudha, M. Selvakumar

и другие.

Journal of Materials Engineering and Performance, Год журнала: 2024, Номер unknown

Опубликована: Дек. 10, 2024

Язык: Английский

The Influence of Roughness of Surfaces on Wear Mechanisms in Metal–Rock Interactions DOI Open Access
Vlad Alexandru Florea, Mihaela Toderaş,

Ciprian Danciu

и другие.

Coatings, Год журнала: 2025, Номер 15(2), С. 150 - 150

Опубликована: Янв. 30, 2025

The processes of rock excavation and processing involve intense mechanical stresses on cutting, displacing, transporting tools, inevitably leading to the phenomenon dry friction wear. factors influencing intensity mechanisms wear are complex interdependent, being conditioned by physical–mechanical properties rocks, geometric characteristics materials as well cutting process parameters (cutting force, feed rate). Previous studies have mainly addressed global aspect without delving into microstructural evolution contact surfaces during process. In this paper, through controlled tribometric tests, we investigated in detail abrasive metallic with different types an emphasis role played surface roughness mineralogical rocks. Experimentally, varied applied forces number cycles simulate working conditions evaluate how these influence morphology evolution. Microstructural analysis samples, combined measurements, allowed identification predominant degradation (abrasion, adhesion, fatigue) their correlation material parameters. results shown a strong between capacity rocks petrographic properties, such hardness, porosity, hard mineral content. It was also found that plays essential mechanisms, both initiation propagation its effects. Depending experimental data, developed classification based potential proposed criteria for optimal adoption tools technological equipment depending type encountered. study can contribute improving durability mining equipment, reducing operating costs.

Язык: Английский

Процитировано

1

Solving Real-Life Wear Problems: Streamlined Lab Tests for Diverse Industrial Applications. Can AI help ? DOI
Dirk Drees,

Lais Lopes,

Pedro Baião

и другие.

Wear, Год журнала: 2025, Номер unknown, С. 205853 - 205853

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Enhancing forecasting of current-carrying performance through spatial frequency analysis of interface morphology DOI
Nian Yin, Zishuai Wu,

Zhangli Hou

и другие.

Science China Technological Sciences, Год журнала: 2025, Номер 68(2)

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Influence of Abrasive Wear on Reliability and Maintainability of Components in Quarry Technological Equipment: A Case Study DOI Creative Commons
Vlad Alexandru Florea, Mihaela Toderaş,

Daniel Tihanov-Tănăsache

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(7), С. 3603 - 3603

Опубликована: Март 25, 2025

A two-year study (June 2022–May 2024) on the reliability and maintainability of technological equipment at Pătârș basalt quarry identified critical wear issues in metal components impacting operational continuity. The analysis focused identifying causes interruptions evaluating solutions to improve performance. Results showed that speed load significantly impact rate material selection influences abrasion resistance. Laboratory tribological tests provided valuable data influence properties wear, complementing field data. highlighted low components, such as sorting station trough, front loader bucket knife, excavator tooth, necessitating frequent replacements. For example, trough has only a 40% probability operating without defects after 182 days, with average roughness reaching 1.2 μm profile height up 22.5 μm. Similarly, knife tooth require replacement reduced intervals compared their nominal life achieve 80% reliability. To address these findings, proposes two solutions: (1) manufacturing experimental prototypes alternative materials for resistance reliability; (2) on-site welding reconditioning reduce costs downtime.

Язык: Английский

Процитировано

0

Tribological Characteristics of Polyethersulphone-Based Nanocomposites in Ceramic-Polymer Linear Contacts DOI
D. G. Buslovich,

Changjun He,

С. В. Панин

и другие.

Advanced structured materials, Год журнала: 2025, Номер unknown, С. 373 - 387

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Wear on steel tillage tools: A review of material, soil and dynamic conditions DOI
Aysel Yazıcı

Soil and Tillage Research, Год журнала: 2024, Номер 242, С. 106161 - 106161

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

3

Fully unsupervised wear anomaly assessment of aero-bearings enhanced by multi-representation learning of deep features DOI
Tao Shao, Luning Zhang, Shuo Wang

и другие.

Tribology International, Год журнала: 2024, Номер 196, С. 109724 - 109724

Опубликована: Апрель 30, 2024

Язык: Английский

Процитировано

2

Enhancing practical modeling: A neural network approach for locally-resolved prediction of elastohydrodynamic line contacts DOI Creative Commons
Josephine Kelley, Volker Schneider, Gerhard Poll

и другие.

Tribology International, Год журнала: 2024, Номер 199, С. 109988 - 109988

Опубликована: Июль 14, 2024

When modeling bearings in the context of entire transmissions or drivetrains, there are practical limits to calculation resources available calculate single even contacts. In settings such as these, curve-fitting methods have historically been deployed estimate elastohydrodynamic lubrication conditions. Machine learning potential enable more sophisticated physical larger computation environments, evaluation time a trained model is typically negligible. We present neural network that accurately evaluates locally variable film pressure and thickness distributions explore its application (e.g.) cylindrical roller bearings. Employing for EHL calculations rather than curve-fitted, simplified today's standard can physically precise strategy at almost no additional computational cost.

Язык: Английский

Процитировано

2

Machine-Learning-Based Wear Prediction in Journal Bearings under Start–Stop Conditions DOI Creative Commons
Florian König, Florian Wirsing, Ankit Singh

и другие.

Lubricants, Год журнала: 2024, Номер 12(8), С. 290 - 290

Опубликована: Авг. 15, 2024

The present study aims to efficiently predict the wear volume of a journal bearing under start–stop operating conditions. For this purpose, data generated with coupled mixed-elasto-hydrodynamic lubrication (mixed-EHL) and simulation model are used develop neural network (NN)-based surrogate that is able based on operational parameters. suitability different time series forecasting NN architectures, such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Nonlinear Autoregressive Exogenous Inputs (NARX), studied. highest accuracy achieved using NARX architectures.

Язык: Английский

Процитировано

2

A Neural Network for Fast Modeling of Elastohydrodynamic Line Contacts DOI
Josephine Kelley, Volker Schneider, Max Marian

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

1