A two-phase transfer learning framework for gastrointestinal diseases classification DOI Creative Commons
Adnan Ali, Arshad Iqbal, Sohail Ahmed Khan

и другие.

PeerJ Computer Science, Год журнала: 2024, Номер 10, С. e2587 - e2587

Опубликована: Дек. 19, 2024

Gastrointestinal (GI) disorders are common and often debilitating health issues that affect a significant portion of the population. Recent advancements in artificial intelligence, particularly computer vision algorithms, have shown great potential detecting classifying medical images. These algorithms utilize deep convolutional neural network architectures to learn complex spatial features images make predictions for similar unseen The proposed study aims assist gastroenterologists making more efficient accurate diagnoses GI patients by utilizing its two-phase transfer learning framework identify diseases from endoscopic Three pre-trained image classification models, namely Xception, InceptionResNetV2, VGG16, fine-tuned on publicly available datasets annotated tract. Additionally, two custom networks constructed fully trained comparative analysis their performance. Four different tasks examined based categories. architecture employing InceptionResNetV2 achieves most consistent generalized performance across tasks, yielding accuracy scores 85.7% general tract (eight-category classification), 97.6% three-diseases classification, 99.5% polyp identification (binary 74.2% binary esophagitis severity results indicate effectiveness clinical use enhance diseases, aiding early diagnosis treatment.

Язык: Английский

Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI DOI
Md. Faysal Ahamed,

Fariya Bintay Shafi,

Md. Nahiduzzaman

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 185, С. 109503 - 109503

Опубликована: Дек. 7, 2024

Язык: Английский

Процитировано

8

Modified residual attention network for abnormalities segmentation and detection in WCE images DOI
Said Charfi, Mohamed El Ansari, Lahcen Koutti

и другие.

Soft Computing, Год журнала: 2024, Номер 28(9-10), С. 6923 - 6936

Опубликована: Янв. 14, 2024

Язык: Английский

Процитировано

5

Combining the Variational and Deep Learning Techniques for Classification of Video Capsule Endoscopic Images DOI
Bhavana Singh, Pushpendra Kumar, Shailendra Jain

и другие.

Deleted Journal, Год журнала: 2025, Номер unknown

Опубликована: Янв. 3, 2025

Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of gastrointestinal tract that may progress cancer, video capsule endoscopy procedure is employed. The number endoscopic ( $$\mathcal {VCE}$$ ) images produced per examination enormous, which necessitates hours analysis by clinicians. Therefore, there pressing need for automated computer-aided lesion classification techniques. Computer-aided systems utilize deep learning (DL) techniques, as they can potentially enhance anomaly detection However, most DL techniques available in literature utilizes static frames purpose, uses only spatial information image. addition, perform binary classification. Thus, presented work proposes framework multi-class using dynamic images. proposed algorithm combination fractional variational model and model. captures estimating optical flow color maps. Optical maps are fed training. performs task localizes region interest maximum class score. inspired Faster RCNN approach, its backbone architecture EfficientNet B0. achieves average AUC value 0.98, mAP 0.93, 0.878 balanced accuracy value. Hence, efficient image interest.

Язык: Английский

Процитировано

0

Ulcerative Colitis Image Classification Using Federated Deep Learning DOI
Mohammed Al-Refai,

Shahed Alkhaza’leh,

Ahmad Alzu’bi

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 207 - 219

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Combined deep convolutional neural networks for abnormality classification in wireless capsule endoscopy images DOI
Anass Garbaz, Samira Lafraxo, Said Charfi

и другие.

Multimedia Tools and Applications, Год журнала: 2025, Номер unknown

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

0

A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images DOI Creative Commons
Muhammad Attique Khan,

Usama Shafiq,

Ameer Hamza

и другие.

BMC Medical Informatics and Decision Making, Год журнала: 2025, Номер 25(1)

Опубликована: Март 31, 2025

Deep learning has significantly contributed to medical imaging and computer-aided diagnosis (CAD), providing accurate disease classification diagnosis. However, challenges such as inter- intra-class similarities, class imbalance, computational inefficiencies due numerous hyperparameters persist. This study aims address these by presenting a novel deep-learning framework for classifying localizing gastrointestinal (GI) diseases from wireless capsule endoscopy (WCE) images. The proposed begins with dataset augmentation enhance training robustness. Two architectures, Sparse Convolutional DenseNet201 Self-Attention (SC-DSAN) CNN-GRU, are fused at the network level using depth concatenation layer, avoiding costs of feature-level fusion. Bayesian Optimization (BO) is employed dynamic hyperparameter tuning, an Entropy-controlled Marine Predators Algorithm (EMPA) selects optimal features. These features classified Shallow Wide Neural Network (SWNN) traditional classifiers. Experimental evaluations on Kvasir-V1 Kvasir-V2 datasets demonstrate superior performance, achieving accuracies 99.60% 95.10%, respectively. offers improved accuracy, precision, efficiency compared state-of-the-art models. addresses key in GI diagnosis, demonstrating its potential efficient clinical applications. Future work will explore adaptability additional optimize complexity broader deployment.

Язык: Английский

Процитировано

0

MSTNet: a multi-stage progressive network with local–global transformer fusion for image restoration DOI Creative Commons
Ruyu Liu, Lin Wang, Jie He

и другие.

Complex & Intelligent Systems, Год журнала: 2025, Номер 11(6)

Опубликована: Апрель 25, 2025

Язык: Английский

Процитировано

0

Study the Capacity of Deep Learning Techniques Information Generalization Using Capsule Endoscopic Images DOI

Ema Macedo,

Hélder Araújo, Pedro Henriques Abreu

и другие.

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 380 - 394

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhancing image-based diagnosis of gastrointestinal tract diseases through deep learning with EfficientNet and advanced data augmentation techniques DOI Creative Commons

A. M. J. Md. Zubair Rahman,

R. Mythili,

K Chokkanathan

и другие.

BMC Medical Imaging, Год журнала: 2024, Номер 24(1)

Опубликована: Ноя. 12, 2024

The early detection and diagnosis of gastrointestinal tract diseases, such as ulcerative colitis, polyps, esophagitis, are crucial for timely treatment. Traditional imaging techniques often rely on manual interpretation, which is subject to variability may lack precision. Current methodologies leverage conventional deep learning models that, while effective an extent, suffer from overfitting generalization issues medical image datasets due the intricate subtle variations in disease manifestations. These typically do not fully utilize potential transfer or advanced data augmentation, leading less-than-optimal performance, especially diverse real-world scenarios where high. This study introduces a robust model using EfficientNetB5 architecture combined with sophisticated augmentation strategy. tailored high details present images. By integrating maximal pooling extensive regularization, aims enhance diagnostic accuracy reduce overfitting. proposed achieved test 98.89%, surpassing traditional methods by incorporating regularization techniques. application horizontal flipping dynamic scaling during training significantly improved model's ability generalize, evidenced low-test loss 0.230 precision metrics across all classes. framework demonstrates superior performance automated classification diseases data. addressing key limitations existing through innovative techniques, this contributes enhancement processes imaging, potentially more accurate interventions.

Язык: Английский

Процитировано

1

Kar-Danet: A Kolmogorov-Arnold Residual Deformable Attention Network for Colorectal Lesion Classification in Endoscopic Images DOI
Pei Liu, Qiurui Sun, Xingyu Liu

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0