Research on Optimized Allocation of University English Hybrid Teaching Resources under Cloud Computing Environment DOI Open Access
Yan Sun

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract Driven by the informationization of education, a large number educational resources have been developed, which usually exist in form data, and situation “data explosion” has challenged storage retrieval capabilities hybrid teaching resource platform universities. In this paper, we construct for university English cloud computing environment introduce improved bat algorithm using dynamic inertia weights Gaussian perturbation terms into to optimize process allocation. The experimental results benchmark performance test show that no abnormalities, such as program execution failure processing files, indicating stability is good. analysis its application effect shows indicators allocation are optimized after experiment, variability among college classes decreases. learning effectiveness students assisted significantly better than control (P=0.001<0.05). This paper lays foundation improving informatization provides reference basis students’ effectiveness.

Язык: Английский

A multi-scale analysis method with multi-feature selection for house prices forecasting DOI
Jin Shao, Lean Yu, Nengmin Zeng

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112779 - 112779

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

An improved grey wolf optimization algorithm based on scale-free network topology DOI Creative Commons
Jun Zhang,

Yongqiang Dai,

Qiuhong Shi

и другие.

Heliyon, Год журнала: 2024, Номер 10(16), С. e35958 - e35958

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

4

A new enhanced grey wolf optimizer to improve geospatially subsurface analyses DOI

Reza Iraninezhad,

Reza Asheghi, Hassan Ahmadi

и другие.

Modeling Earth Systems and Environment, Год журнала: 2025, Номер 11(2)

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

0

Knowledge-guided classification and regression surrogates co-assisted multi-objective soft subspace clustering algorithm DOI
Feng Zhao, Lu Li, Hanqiang Liu

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(6)

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

A Pareto Front searching algorithm based on reinforcement learning for constrained multiobjective optimization DOI
Yuhang Hu,

Yuelin Qu,

Wei Li

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 121985 - 121985

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A novel multi-objective dung beetle optimizer for Multi-UAV cooperative path planning DOI Creative Commons

Qianwen Shen,

Damin Zhang,

Qing He

и другие.

Heliyon, Год журнала: 2024, Номер 10(17), С. e37286 - e37286

Опубликована: Сен. 1, 2024

Path planning for multiple unmanned aerial vehicles (UAVs) is crucial in collaborative operations and commonly regarded as a complicated, multi-objective optimization problem. However, traditional approaches have difficulty balancing convergence diversity, well effectively handling constraints. In this study, directional evolutionary non-dominated sorting dung beetle optimizer with adaptive stochastic ranking (DENSDBO-ASR) developed to address these issues multi-UAV path planning. Two objectives are initially formulated: the first one represents total cost of length altitude, while second threat time. Additionally, an improved introduced, which integrates strategy including mutation crossover, thereby accelerating enhancing global search capability. Furthermore, mechanism proposed successfully handle different constraints by dynamically adjusting comparison probability. The effectiveness superiority DENSDBO-ASR demonstrated constrained problem functions (CF) test, Wilcoxon rank sum Friedman test. Finally, three sets simulated tests carried out, each numbers UAVs. most challenging scenario, identifies feasible paths average values two objective low 637.26 0. comparative results demonstrate that outperforms other five algorithms terms accuracy population making it exceptional approach challenges.

Язык: Английский

Процитировано

3

An improved reinforcement learning-based differential evolution algorithm for combined economic and emission dispatch problems DOI
Yuan Wang, Xiaobing Yu, Wen Zhang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 140, С. 109709 - 109709

Опубликована: Ноя. 29, 2024

Язык: Английский

Процитировано

3

Fractional order swarming intelligence for multi-objective load dispatch with photovoltaic integration DOI
Yasir Muhammad, Naveed Ishtiaq Chaudhary,

Babar Sattar

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109073 - 109073

Опубликована: Авг. 8, 2024

Язык: Английский

Процитировано

2

Semi-supervised prediction method for time series based on Monte Carlo and time fusion feature attention DOI
Yang Yang, Jing Zhang,

Lulu Wang

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112283 - 112283

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

1

Research on Optimized Allocation of University English Hybrid Teaching Resources under Cloud Computing Environment DOI Open Access
Yan Sun

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract Driven by the informationization of education, a large number educational resources have been developed, which usually exist in form data, and situation “data explosion” has challenged storage retrieval capabilities hybrid teaching resource platform universities. In this paper, we construct for university English cloud computing environment introduce improved bat algorithm using dynamic inertia weights Gaussian perturbation terms into to optimize process allocation. The experimental results benchmark performance test show that no abnormalities, such as program execution failure processing files, indicating stability is good. analysis its application effect shows indicators allocation are optimized after experiment, variability among college classes decreases. learning effectiveness students assisted significantly better than control (P=0.001<0.05). This paper lays foundation improving informatization provides reference basis students’ effectiveness.

Язык: Английский

Процитировано

0