Geostatistics and artificial intelligence coupling: advanced machine learning neural network regressor for experimental variogram modelling using Bayesian optimization DOI Creative Commons
Saâd Soulaimani, Ayoub Soulaimani, Kamal Abdelrahman

и другие.

Frontiers in Earth Science, Год журнала: 2024, Номер 12

Опубликована: Дек. 12, 2024

Experimental variogram modelling is an essential process in geostatistics. The use of artificial intelligence (AI) a new and advanced way automating experimental modelling. One part this AI approach the population search algorithms to fine-tune hyperparameters for better prediction performing. We Bayesian optimization first time find optimal learning parameters more precise neural network regressor goal leverage capability consider previous regression results improve output using three variograms as inputs one training, calculated from ore grades four orebodies, characterised by same genetic aspect. In comparison architectures, Bayesian-optimized demonstrably achieved superior Coefficient determination validation 78.36%. This significantly outperformed non-optimized wide, bilayer, tri-layer configurations, which yielded 32.94%, 14.00%, −46.03% determination, respectively. improved reliability demonstrates its superiority over traditional, regressors, indicating that incorporating can advance modelling, thus offering accurate intelligent solution, combining geostatistics specifically machine

Язык: Английский

Application of Deep Learning for Reservoir Porosity Prediction and self Organizing Map for Lithofacies Prediction DOI
Mazahir Hussain, Shuang Liu, Wakeel Hussain

и другие.

Journal of Applied Geophysics, Год журнала: 2024, Номер 230, С. 105502 - 105502

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

6

An integrated comprehensive approach describing structural features and comparative petrophysical analysis between conventional and machine learning tools to characterize carbonate reservoir: A case study from Upper Indus Basin, Pakistan DOI
Zohaib Naseer,

Urooj Shakir,

Muyyassar Hussain

и другие.

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2025, Номер unknown, С. 103885 - 103885

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Evaluating the Ranikot formation in the middle Indus Basin, Pakistan as a promising secondary reservoir for development DOI Creative Commons
Muhsan Ehsan, Rujun Chen, Muhammad Ali

и другие.

Geomechanics and Geophysics for Geo-Energy and Geo-Resources, Год журнала: 2025, Номер 11(1)

Опубликована: Март 24, 2025

Язык: Английский

Процитировано

0

Exploring the Significance of Digitalized Logs and Seismics through Structural Modelling and Petrophysical Analyses: Case study: Neogene-Paleogene reservoirs of the Rio Del Rey Basin, Gulf of Guinea. Cameroon DOI Creative Commons

Mbouemboue Nsangou Moussa Ahmed,

Olugbenga A. Ehinola,

Wakwenmendam Nguet Pauline

и другие.

Results in Earth Sciences, Год журнала: 2025, Номер unknown, С. 100085 - 100085

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A data-driven PCA-RF-VIM method to identify key factors driving post-fracturing gas production of tight reservoirs DOI Creative Commons
Yifan Zhao, Xiaofan Li, Lei Zuo

и другие.

Energy Geoscience, Год журнала: 2025, Номер unknown, С. 100411 - 100411

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Influence of sea-level changes and dolomitization on the formation of high-quality reservoirs in the Cambrian Longwangmiao Formation, central Sichuan basin DOI Creative Commons

Yuru Zhao,

Da Gao, Ngong Roger Ngia

и другие.

Journal of Petroleum Exploration and Production Technology, Год журнала: 2025, Номер 15(5)

Опубликована: Апрель 29, 2025

Язык: Английский

Процитировано

0

Lithofacies and sandstone reservoir characterization for geothermal assessment through artificial intelligence DOI Creative Commons
Zohaib Naseer, Muhsan Ehsan, Muhammad Ali

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105173 - 105173

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Geothermal investigation of sandstone reservoirs using a probabilistic neural network with 2D seismic and borehole data: insights into structural and reservoir characteristics DOI
Zohaib Naseer, Muhsan Ehsan, Muhammad Ali

и другие.

Geothermics, Год журнала: 2025, Номер 131, С. 103394 - 103394

Опубликована: Май 22, 2025

Язык: Английский

Процитировано

0

Analyzing the impact of clay minerals on the reservoir quality of the Lower Goru Formation using Unsupervised Machine Learning DOI Creative Commons

Kausar Noreen,

Tahir Azeem, Faisal Rehman

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(5), С. e0324793 - e0324793

Опубликована: Май 22, 2025

The reservoir quality of the Lower Goru Formation is highly variable due to its heterogeneous nature influenced by sea level fluctuations during Early Cretaceous period. This study applies an unsupervised machine learning workflow, integrating Principal Component Analysis (PCA) for dimensionality reduction, Self-Organizing Maps (SOM) clustering, and fuzzy classification geological labeling, alongside petrophysical evaluation cross-plot analysis, assess impact clay minerals on in NIM-Tay block, Indus Basin, Pakistan. Petrophysical analysis delineates a potential zone (1455–1517 m) characterized 13.9% effective porosity 27.3% water saturation. first four principal components explain approximately 90% dataset variance. Electrofacies distinguishes facies—Impermeable Reservoir, Potential Non-Reservoir, Tight Reservoir—each corresponding specific mineral assemblages. Cross-plot electrofacies reveal that facies dominated chlorite montmorillonite preserve (15%) permeability (888.87 mD), whereas kaolinite-rich mixed-layer significantly reduce quality. provides reproducible scalable framework with workflows, offering improved characterization not only Basin but also similar sandstone reservoirs globally.

Язык: Английский

Процитировано

0

Optimization of entrainment and interfacial flow patterns in countercurrent air-water two-phase flow in vertical pipes DOI Creative Commons
Yongzhi Wang, Feng Luo, Zichen Zhu

и другие.

Frontiers in Materials, Год журнала: 2024, Номер 11

Опубликована: Ноя. 1, 2024

This study investigates countercurrent air-water two-phase flow in vertical pipes with inner diameters of 26 mm and 44 a height 2000 mm, under controlled conditions to eliminate heat mass transfer. Cutting-edge techniques were employed measure the liquid film thickness (δ) entrainment (e) within annular pattern. The methodology involved systematic comparative analysis experimental results against established models, identifying most accurate methods for predicting behavior. Specifically, Schubring et al. correlation was found accurately predict e pipes, while Wallis more pipes. Additionally, interfacial shear stress analyzed, confirming high precision δ parameters. research enhances understanding by providing reliable estimation different pipe emphasizes significance determining stress. Key findings include identification models sizes addressing challenges measuring conditions. study’s novelty lies its comprehensive existing leading improved predictions dynamics thereby contributing valuable insights into behavior geosciences environmental engineering.

Язык: Английский

Процитировано

0